![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuv | Structured version Visualization version GIF version |
Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
Ref | Expression |
---|---|
reuv | ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3376 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3477 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | eubii 2578 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∃!weu 2561 ∃!wreu 3373 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-reu 3376 df-v 3475 |
This theorem is referenced by: euen1 9032 updjud 9935 hlimeui 30775 |
Copyright terms: Public domain | W3C validator |