Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuv Structured version   Visualization version   GIF version

Theorem reuv 3437
 Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 3077 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3413 . . . 4 𝑥 ∈ V
32biantrur 534 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43eubii 2604 . 2 (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 281 1 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∈ wcel 2111  ∃!weu 2587  ∃!wreu 3072  Vcvv 3409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-reu 3077  df-v 3411 This theorem is referenced by:  euen1  8611  updjud  9409  hlimeui  29135
 Copyright terms: Public domain W3C validator