Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reuv | Structured version Visualization version GIF version |
Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
Ref | Expression |
---|---|
reuv | ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3070 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | eubii 2585 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 ∃!wreu 3065 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-reu 3070 df-v 3424 |
This theorem is referenced by: euen1 8770 updjud 9623 hlimeui 29503 |
Copyright terms: Public domain | W3C validator |