MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuv Structured version   Visualization version   GIF version

Theorem reuv 3510
Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 3381 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3484 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43eubii 2585 . 2 (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 278 1 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  ∃!weu 2568  ∃!wreu 3378  Vcvv 3480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-reu 3381  df-v 3482
This theorem is referenced by:  euen1  9067  updjud  9974  hlimeui  31259
  Copyright terms: Public domain W3C validator