![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-intrabeq | Structured version Visualization version GIF version |
Description: Equality theorem for supremum of sets of ordinals. (Contributed by RP, 23-Jan-2025.) |
Ref | Expression |
---|---|
rp-intrabeq | ⊢ (𝐴 = 𝐵 → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3312 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)) | |
2 | 1 | rabbidv 3427 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} = {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥}) |
3 | 2 | inteqd 4949 | 1 ⊢ (𝐴 = 𝐵 → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∀wral 3051 {crab 3419 ⊆ wss 3940 ∩ cint 4944 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-ral 3052 df-rex 3061 df-rab 3420 df-int 4945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |