![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-unirabeq | Structured version Visualization version GIF version |
Description: Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025.) |
Ref | Expression |
---|---|
rp-unirabeq | ⊢ (𝐴 = 𝐵 → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3314 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) | |
2 | 1 | rabbidv 3432 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} = {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦}) |
3 | 2 | unieqd 4912 | 1 ⊢ (𝐴 = 𝐵 → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∀wral 3053 {crab 3424 ⊆ wss 3940 ∪ cuni 4899 Oncon0 6354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-in 3947 df-ss 3957 df-uni 4900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |