Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-unirabeq Structured version   Visualization version   GIF version

Theorem rp-unirabeq 43218
Description: Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
rp-unirabeq (𝐴 = 𝐵 {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∈ On ∣ ∀𝑦𝐵 𝑥𝑦})
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵

Proof of Theorem rp-unirabeq
StepHypRef Expression
1 raleq 3298 . . 3 (𝐴 = 𝐵 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐵 𝑥𝑦))
21rabbidv 3416 . 2 (𝐴 = 𝐵 → {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∈ On ∣ ∀𝑦𝐵 𝑥𝑦})
32unieqd 4887 1 (𝐴 = 𝐵 {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∈ On ∣ ∀𝑦𝐵 𝑥𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3045  {crab 3408  wss 3917   cuni 4874  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-ss 3934  df-uni 4875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator