Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | inteq 4882 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ral 3069 df-int 4880 |
This theorem is referenced by: intprgOLD 4915 elreldm 5844 ordintdif 6315 fniinfv 6846 onsucmin 7668 elxp5 7770 1stval2 7848 2ndval2 7849 fundmen 8821 xpsnen 8842 unblem2 9067 unblem3 9068 fiint 9091 elfi2 9173 fi0 9179 elfiun 9189 tcvalg 9496 tz9.12lem3 9547 rankvalb 9555 rankvalg 9575 ranksnb 9585 rankonidlem 9586 cardval3 9710 cardidm 9717 harsucnn 9756 cfval 10003 cflim3 10018 coftr 10029 isfin3ds 10085 fin23lem17 10094 fin23lem39 10106 isf33lem 10122 isf34lem5 10134 isf34lem6 10136 wuncval 10498 tskmval 10595 cleq1 14694 dfrtrcl2 14773 mrcfval 17317 mrcval 17319 cycsubg2 18829 efgval 19323 lspfval 20235 lspval 20237 lsppropd 20280 aspval 21077 aspval2 21102 clsfval 22176 clsval 22188 clsval2 22201 hauscmplem 22557 cmpfi 22559 1stcfb 22596 fclscmp 23181 spanval 29695 chsupid 29774 intimafv 31043 zarclsint 31822 zarcmplem 31831 sigagenval 32108 kur14 33178 mclsval 33525 naddcllem 33831 naddov2 33834 naddcom 33835 naddid1 33836 scutval 33994 igenval 36219 pclfvalN 37903 pclvalN 37904 diaintclN 39072 docaffvalN 39135 docafvalN 39136 docavalN 39137 dibintclN 39181 dihglb2 39356 dihintcl 39358 mzpval 40554 dnnumch3lem 40871 aomclem8 40886 rgspnval 40993 minregex2 41142 iotain 42035 salgenval 43862 mreclat 46283 |
Copyright terms: Public domain | W3C validator |