| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 4916 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ral 3046 df-rex 3055 df-int 4914 |
| This theorem is referenced by: elreldm 5902 ordintdif 6386 fniinfv 6942 onsucmin 7799 elxp5 7902 1stval2 7988 2ndval2 7989 naddcllem 8643 naddov2 8646 naddcom 8649 naddrid 8650 naddasslem1 8661 naddasslem2 8662 naddass 8663 naddsuc2 8668 fundmen 9005 xpsnen 9029 unblem2 9247 unblem3 9248 fiint 9284 fiintOLD 9285 elfi2 9372 fi0 9378 elfiun 9388 tcvalg 9698 tz9.12lem3 9749 rankvalb 9757 rankvalg 9777 ranksnb 9787 rankonidlem 9788 cardval3 9912 cardidm 9919 harsucnn 9958 cfval 10207 cflim3 10222 coftr 10233 isfin3ds 10289 fin23lem17 10298 fin23lem39 10310 isf33lem 10326 isf34lem5 10338 isf34lem6 10340 wuncval 10702 tskmval 10799 cleq1 14956 dfrtrcl2 15035 mrcfval 17576 mrcval 17578 cycsubg2 19149 efgval 19654 rgspnval 20528 lspfval 20886 lspval 20888 lsppropd 20932 aspval 21789 aspval2 21814 clsfval 22919 clsval 22931 clsval2 22944 hauscmplem 23300 cmpfi 23302 1stcfb 23339 fclscmp 23924 scutval 27719 spanval 31269 chsupid 31348 intimafv 32641 fldgenval 33269 primefldgen1 33278 zarclsint 33869 zarcmplem 33878 sigagenval 34137 onvf1odlem3 35099 kur14 35210 mclsval 35557 igenval 38062 pclfvalN 39890 pclvalN 39891 diaintclN 41059 docaffvalN 41122 docafvalN 41123 docavalN 41124 dibintclN 41168 dihglb2 41343 dihintcl 41345 mzpval 42727 dnnumch3lem 43042 aomclem8 43057 rp-intrabeq 43217 nadd1suc 43388 minregex2 43531 iotain 44413 salgenval 46326 mreclat 48989 |
| Copyright terms: Public domain | W3C validator |