| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 4925 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-ral 3052 df-rex 3061 df-int 4923 |
| This theorem is referenced by: elreldm 5915 ordintdif 6403 fniinfv 6957 onsucmin 7815 elxp5 7919 1stval2 8005 2ndval2 8006 naddcllem 8688 naddov2 8691 naddcom 8694 naddrid 8695 naddasslem1 8706 naddasslem2 8707 naddass 8708 naddsuc2 8713 fundmen 9045 xpsnen 9069 unblem2 9301 unblem3 9302 fiint 9338 fiintOLD 9339 elfi2 9426 fi0 9432 elfiun 9442 tcvalg 9752 tz9.12lem3 9803 rankvalb 9811 rankvalg 9831 ranksnb 9841 rankonidlem 9842 cardval3 9966 cardidm 9973 harsucnn 10012 cfval 10261 cflim3 10276 coftr 10287 isfin3ds 10343 fin23lem17 10352 fin23lem39 10364 isf33lem 10380 isf34lem5 10392 isf34lem6 10394 wuncval 10756 tskmval 10853 cleq1 15002 dfrtrcl2 15081 mrcfval 17620 mrcval 17622 cycsubg2 19193 efgval 19698 rgspnval 20572 lspfval 20930 lspval 20932 lsppropd 20976 aspval 21833 aspval2 21858 clsfval 22963 clsval 22975 clsval2 22988 hauscmplem 23344 cmpfi 23346 1stcfb 23383 fclscmp 23968 scutval 27764 spanval 31314 chsupid 31393 intimafv 32688 fldgenval 33306 primefldgen1 33315 zarclsint 33903 zarcmplem 33912 sigagenval 34171 kur14 35238 mclsval 35585 igenval 38085 pclfvalN 39908 pclvalN 39909 diaintclN 41077 docaffvalN 41140 docafvalN 41141 docavalN 41142 dibintclN 41186 dihglb2 41361 dihintcl 41363 mzpval 42755 dnnumch3lem 43070 aomclem8 43085 rp-intrabeq 43245 nadd1suc 43416 minregex2 43559 iotain 44441 salgenval 46350 mreclat 48971 |
| Copyright terms: Public domain | W3C validator |