![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | inteq 4973 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-rex 3077 df-int 4971 |
This theorem is referenced by: elreldm 5960 ordintdif 6445 fniinfv 7000 onsucmin 7857 elxp5 7963 1stval2 8047 2ndval2 8048 naddcllem 8732 naddov2 8735 naddcom 8738 naddrid 8739 naddasslem1 8750 naddasslem2 8751 naddass 8752 naddsuc2 8757 fundmen 9096 xpsnen 9121 unblem2 9357 unblem3 9358 fiint 9394 fiintOLD 9395 elfi2 9483 fi0 9489 elfiun 9499 tcvalg 9807 tz9.12lem3 9858 rankvalb 9866 rankvalg 9886 ranksnb 9896 rankonidlem 9897 cardval3 10021 cardidm 10028 harsucnn 10067 cfval 10316 cflim3 10331 coftr 10342 isfin3ds 10398 fin23lem17 10407 fin23lem39 10419 isf33lem 10435 isf34lem5 10447 isf34lem6 10449 wuncval 10811 tskmval 10908 cleq1 15032 dfrtrcl2 15111 mrcfval 17666 mrcval 17668 cycsubg2 19250 efgval 19759 lspfval 20994 lspval 20996 lsppropd 21040 aspval 21916 aspval2 21941 clsfval 23054 clsval 23066 clsval2 23079 hauscmplem 23435 cmpfi 23437 1stcfb 23474 fclscmp 24059 scutval 27863 spanval 31365 chsupid 31444 intimafv 32722 fldgenval 33279 primefldgen1 33288 zarclsint 33818 zarcmplem 33827 sigagenval 34104 kur14 35184 mclsval 35531 igenval 38021 pclfvalN 39846 pclvalN 39847 diaintclN 41015 docaffvalN 41078 docafvalN 41079 docavalN 41080 dibintclN 41124 dihglb2 41299 dihintcl 41301 mzpval 42688 dnnumch3lem 43003 aomclem8 43018 rgspnval 43125 rp-intrabeq 43182 nadd1suc 43354 minregex2 43497 iotain 44386 salgenval 46242 mreclat 48669 |
Copyright terms: Public domain | W3C validator |