| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 4902 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rex 3054 df-int 4900 |
| This theorem is referenced by: elreldm 5881 ordintdif 6362 fniinfv 6905 onsucmin 7760 elxp5 7863 1stval2 7948 2ndval2 7949 naddcllem 8601 naddov2 8604 naddcom 8607 naddrid 8608 naddasslem1 8619 naddasslem2 8620 naddass 8621 naddsuc2 8626 fundmen 8963 xpsnen 8985 unblem2 9198 unblem3 9199 fiint 9235 fiintOLD 9236 elfi2 9323 fi0 9329 elfiun 9339 tcvalg 9653 tz9.12lem3 9704 rankvalb 9712 rankvalg 9732 ranksnb 9742 rankonidlem 9743 cardval3 9867 cardidm 9874 harsucnn 9913 cfval 10160 cflim3 10175 coftr 10186 isfin3ds 10242 fin23lem17 10251 fin23lem39 10263 isf33lem 10279 isf34lem5 10291 isf34lem6 10293 wuncval 10655 tskmval 10752 cleq1 14908 dfrtrcl2 14987 mrcfval 17532 mrcval 17534 cycsubg2 19107 efgval 19614 rgspnval 20515 lspfval 20894 lspval 20896 lsppropd 20940 aspval 21798 aspval2 21823 clsfval 22928 clsval 22940 clsval2 22953 hauscmplem 23309 cmpfi 23311 1stcfb 23348 fclscmp 23933 scutval 27729 spanval 31295 chsupid 31374 intimafv 32667 fldgenval 33261 primefldgen1 33270 zarclsint 33838 zarcmplem 33847 sigagenval 34106 onvf1odlem3 35077 kur14 35188 mclsval 35535 igenval 38040 pclfvalN 39868 pclvalN 39869 diaintclN 41037 docaffvalN 41100 docafvalN 41101 docavalN 41102 dibintclN 41146 dihglb2 41321 dihintcl 41323 mzpval 42705 dnnumch3lem 43019 aomclem8 43034 rp-intrabeq 43194 nadd1suc 43365 minregex2 43508 iotain 44390 salgenval 46303 mreclat 48982 |
| Copyright terms: Public domain | W3C validator |