Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | inteq 4879 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-int 4877 |
This theorem is referenced by: intprgOLD 4912 elreldm 5833 ordintdif 6300 fniinfv 6828 onsucmin 7643 elxp5 7744 1stval2 7821 2ndval2 7822 fundmen 8775 xpsnen 8796 unblem2 8997 unblem3 8998 fiint 9021 elfi2 9103 fi0 9109 elfiun 9119 tcvalg 9427 tz9.12lem3 9478 rankvalb 9486 rankvalg 9506 ranksnb 9516 rankonidlem 9517 cardval3 9641 cardidm 9648 harsucnn 9687 cfval 9934 cflim3 9949 coftr 9960 isfin3ds 10016 fin23lem17 10025 fin23lem39 10037 isf33lem 10053 isf34lem5 10065 isf34lem6 10067 wuncval 10429 tskmval 10526 cleq1 14622 dfrtrcl2 14701 mrcfval 17234 mrcval 17236 cycsubg2 18744 efgval 19238 lspfval 20150 lspval 20152 lsppropd 20195 aspval 20987 aspval2 21012 clsfval 22084 clsval 22096 clsval2 22109 hauscmplem 22465 cmpfi 22467 1stcfb 22504 fclscmp 23089 spanval 29596 chsupid 29675 intimafv 30945 zarclsint 31724 zarcmplem 31733 sigagenval 32008 kur14 33078 mclsval 33425 naddcllem 33758 naddov2 33761 naddcom 33762 naddid1 33763 scutval 33921 igenval 36146 pclfvalN 37830 pclvalN 37831 diaintclN 38999 docaffvalN 39062 docafvalN 39063 docavalN 39064 dibintclN 39108 dihglb2 39283 dihintcl 39285 mzpval 40470 dnnumch3lem 40787 aomclem8 40802 rgspnval 40909 iotain 41924 salgenval 43752 mreclat 46171 |
Copyright terms: Public domain | W3C validator |