| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 4913 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rex 3054 df-int 4911 |
| This theorem is referenced by: elreldm 5899 ordintdif 6383 fniinfv 6939 onsucmin 7796 elxp5 7899 1stval2 7985 2ndval2 7986 naddcllem 8640 naddov2 8643 naddcom 8646 naddrid 8647 naddasslem1 8658 naddasslem2 8659 naddass 8660 naddsuc2 8665 fundmen 9002 xpsnen 9025 unblem2 9240 unblem3 9241 fiint 9277 fiintOLD 9278 elfi2 9365 fi0 9371 elfiun 9381 tcvalg 9691 tz9.12lem3 9742 rankvalb 9750 rankvalg 9770 ranksnb 9780 rankonidlem 9781 cardval3 9905 cardidm 9912 harsucnn 9951 cfval 10200 cflim3 10215 coftr 10226 isfin3ds 10282 fin23lem17 10291 fin23lem39 10303 isf33lem 10319 isf34lem5 10331 isf34lem6 10333 wuncval 10695 tskmval 10792 cleq1 14949 dfrtrcl2 15028 mrcfval 17569 mrcval 17571 cycsubg2 19142 efgval 19647 rgspnval 20521 lspfval 20879 lspval 20881 lsppropd 20925 aspval 21782 aspval2 21807 clsfval 22912 clsval 22924 clsval2 22937 hauscmplem 23293 cmpfi 23295 1stcfb 23332 fclscmp 23917 scutval 27712 spanval 31262 chsupid 31341 intimafv 32634 fldgenval 33262 primefldgen1 33271 zarclsint 33862 zarcmplem 33871 sigagenval 34130 onvf1odlem3 35092 kur14 35203 mclsval 35550 igenval 38055 pclfvalN 39883 pclvalN 39884 diaintclN 41052 docaffvalN 41115 docafvalN 41116 docavalN 41117 dibintclN 41161 dihglb2 41336 dihintcl 41338 mzpval 42720 dnnumch3lem 43035 aomclem8 43050 rp-intrabeq 43210 nadd1suc 43381 minregex2 43524 iotain 44406 salgenval 46319 mreclat 48985 |
| Copyright terms: Public domain | W3C validator |