![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | inteq 4953 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-ral 3059 df-rex 3068 df-int 4951 |
This theorem is referenced by: elreldm 5948 ordintdif 6435 fniinfv 6986 onsucmin 7840 elxp5 7945 1stval2 8029 2ndval2 8030 naddcllem 8712 naddov2 8715 naddcom 8718 naddrid 8719 naddasslem1 8730 naddasslem2 8731 naddass 8732 naddsuc2 8737 fundmen 9069 xpsnen 9093 unblem2 9326 unblem3 9327 fiint 9363 fiintOLD 9364 elfi2 9451 fi0 9457 elfiun 9467 tcvalg 9775 tz9.12lem3 9826 rankvalb 9834 rankvalg 9854 ranksnb 9864 rankonidlem 9865 cardval3 9989 cardidm 9996 harsucnn 10035 cfval 10284 cflim3 10299 coftr 10310 isfin3ds 10366 fin23lem17 10375 fin23lem39 10387 isf33lem 10403 isf34lem5 10415 isf34lem6 10417 wuncval 10779 tskmval 10876 cleq1 15018 dfrtrcl2 15097 mrcfval 17652 mrcval 17654 cycsubg2 19240 efgval 19749 rgspnval 20628 lspfval 20988 lspval 20990 lsppropd 21034 aspval 21910 aspval2 21935 clsfval 23048 clsval 23060 clsval2 23073 hauscmplem 23429 cmpfi 23431 1stcfb 23468 fclscmp 24053 scutval 27859 spanval 31361 chsupid 31440 intimafv 32725 fldgenval 33293 primefldgen1 33302 zarclsint 33832 zarcmplem 33841 sigagenval 34120 kur14 35200 mclsval 35547 igenval 38047 pclfvalN 39871 pclvalN 39872 diaintclN 41040 docaffvalN 41103 docafvalN 41104 docavalN 41105 dibintclN 41149 dihglb2 41324 dihintcl 41326 mzpval 42719 dnnumch3lem 43034 aomclem8 43049 rp-intrabeq 43209 nadd1suc 43381 minregex2 43524 iotain 44412 salgenval 46276 mreclat 48785 |
Copyright terms: Public domain | W3C validator |