| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 4900 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ral 3049 df-rex 3058 df-int 4898 |
| This theorem is referenced by: elreldm 5879 ordintdif 6362 fniinfv 6906 onsucmin 7757 elxp5 7859 1stval2 7944 2ndval2 7945 naddcllem 8597 naddov2 8600 naddcom 8603 naddrid 8604 naddasslem1 8615 naddasslem2 8616 naddass 8617 naddsuc2 8622 fundmen 8960 xpsnen 8981 unblem2 9184 unblem3 9185 fiint 9218 elfi2 9305 fi0 9311 elfiun 9321 tcvalg 9633 tz9.12lem3 9689 rankvalb 9697 rankvalg 9717 ranksnb 9727 rankonidlem 9728 cardval3 9852 cardidm 9859 harsucnn 9898 cfval 10145 cflim3 10160 coftr 10171 isfin3ds 10227 fin23lem17 10236 fin23lem39 10248 isf33lem 10264 isf34lem5 10276 isf34lem6 10278 wuncval 10640 tskmval 10737 cleq1 14892 dfrtrcl2 14971 mrcfval 17516 mrcval 17518 cycsubg2 19124 efgval 19631 rgspnval 20529 lspfval 20908 lspval 20910 lsppropd 20954 aspval 21812 aspval2 21837 clsfval 22941 clsval 22953 clsval2 22966 hauscmplem 23322 cmpfi 23324 1stcfb 23361 fclscmp 23946 scutval 27742 spanval 31315 chsupid 31394 intimafv 32696 fldgenval 33285 primefldgen1 33294 zarclsint 33906 zarcmplem 33915 sigagenval 34174 onvf1odlem3 35170 kur14 35281 mclsval 35628 igenval 38121 pclfvalN 40008 pclvalN 40009 diaintclN 41177 docaffvalN 41240 docafvalN 41241 docavalN 41242 dibintclN 41286 dihglb2 41461 dihintcl 41463 mzpval 42849 dnnumch3lem 43163 aomclem8 43178 rp-intrabeq 43338 nadd1suc 43509 minregex2 43652 iotain 44534 salgenval 46443 mreclat 49121 |
| Copyright terms: Public domain | W3C validator |