| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 4900 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-rex 3057 df-int 4898 |
| This theorem is referenced by: elreldm 5875 ordintdif 6357 fniinfv 6900 onsucmin 7751 elxp5 7853 1stval2 7938 2ndval2 7939 naddcllem 8591 naddov2 8594 naddcom 8597 naddrid 8598 naddasslem1 8609 naddasslem2 8610 naddass 8611 naddsuc2 8616 fundmen 8953 xpsnen 8974 unblem2 9177 unblem3 9178 fiint 9211 elfi2 9298 fi0 9304 elfiun 9314 tcvalg 9628 tz9.12lem3 9679 rankvalb 9687 rankvalg 9707 ranksnb 9717 rankonidlem 9718 cardval3 9842 cardidm 9849 harsucnn 9888 cfval 10135 cflim3 10150 coftr 10161 isfin3ds 10217 fin23lem17 10226 fin23lem39 10238 isf33lem 10254 isf34lem5 10266 isf34lem6 10268 wuncval 10630 tskmval 10727 cleq1 14887 dfrtrcl2 14966 mrcfval 17511 mrcval 17513 cycsubg2 19120 efgval 19627 rgspnval 20525 lspfval 20904 lspval 20906 lsppropd 20950 aspval 21808 aspval2 21833 clsfval 22938 clsval 22950 clsval2 22963 hauscmplem 23319 cmpfi 23321 1stcfb 23358 fclscmp 23943 scutval 27739 spanval 31308 chsupid 31387 intimafv 32687 fldgenval 33273 primefldgen1 33282 zarclsint 33880 zarcmplem 33889 sigagenval 34148 onvf1odlem3 35137 kur14 35248 mclsval 35595 igenval 38100 pclfvalN 39927 pclvalN 39928 diaintclN 41096 docaffvalN 41159 docafvalN 41160 docavalN 41161 dibintclN 41205 dihglb2 41380 dihintcl 41382 mzpval 42764 dnnumch3lem 43078 aomclem8 43093 rp-intrabeq 43253 nadd1suc 43424 minregex2 43567 iotain 44449 salgenval 46358 mreclat 49027 |
| Copyright terms: Public domain | W3C validator |