Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssunib Structured version   Visualization version   GIF version

Theorem ssunib 43340
Description: Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
ssunib (𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem ssunib
StepHypRef Expression
1 dfss3 3919 . 2 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
2 eluni2 4864 . . 3 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
32ralbii 3079 . 2 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
41, 3bitri 275 1 (𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  wral 3048  wrex 3057  wss 3898   cuni 4860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-uni 4861
This theorem is referenced by:  onmaxnelsup  43343  onsupnmax  43348
  Copyright terms: Public domain W3C validator