| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssunib | Structured version Visualization version GIF version | ||
| Description: Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| ssunib | ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3943 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵) | |
| 2 | eluni2 4883 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) | |
| 3 | 2 | ralbii 3077 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 ⊆ wss 3922 ∪ cuni 4879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-v 3457 df-ss 3939 df-uni 4880 |
| This theorem is referenced by: onmaxnelsup 43184 onsupnmax 43189 |
| Copyright terms: Public domain | W3C validator |