| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssunib | Structured version Visualization version GIF version | ||
| Description: Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| ssunib | ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3919 | . 2 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵) | |
| 2 | eluni2 4864 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) | |
| 3 | 2 | ralbii 3079 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-uni 4861 |
| This theorem is referenced by: onmaxnelsup 43343 onsupnmax 43348 |
| Copyright terms: Public domain | W3C validator |