Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssunib Structured version   Visualization version   GIF version

Theorem ssunib 43223
Description: Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
ssunib (𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem ssunib
StepHypRef Expression
1 dfss3 3985 . 2 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
2 eluni2 4917 . . 3 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
32ralbii 3092 . 2 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
41, 3bitri 275 1 (𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  wral 3060  wrex 3069  wss 3964   cuni 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-v 3481  df-ss 3981  df-uni 4914
This theorem is referenced by:  onmaxnelsup  43226  onsupnmax  43231
  Copyright terms: Public domain W3C validator