Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssunib Structured version   Visualization version   GIF version

Theorem ssunib 41969
Description: Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
ssunib (𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem ssunib
StepHypRef Expression
1 dfss3 3971 . 2 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
2 eluni2 4913 . . 3 (𝑥 𝐵 ↔ ∃𝑦𝐵 𝑥𝑦)
32ralbii 3094 . 2 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
41, 3bitri 275 1 (𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107  wral 3062  wrex 3071  wss 3949   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-v 3477  df-in 3956  df-ss 3966  df-uni 4910
This theorem is referenced by:  onmaxnelsup  41972  onsupnmax  41977
  Copyright terms: Public domain W3C validator