![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onmaxnelsup | Structured version Visualization version GIF version |
Description: Two ways to say the maximum element of a class of ordinals is also the supremum of that class. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onmaxnelsup | ⊢ (𝐴 ⊆ On → (¬ 𝐴 ⊆ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnal 3090 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
2 | ralnex 3062 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
3 | 2 | rexbii 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
4 | ssunib 42712 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
5 | 4 | notbii 319 | . . 3 ⊢ (¬ 𝐴 ⊆ ∪ 𝐴 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
6 | 1, 3, 5 | 3bitr4ri 303 | . 2 ⊢ (¬ 𝐴 ⊆ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦) |
7 | simpl 481 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ On) | |
8 | 7 | sselda 3972 | . . . . 5 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
9 | ssel2 3967 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
10 | 9 | adantr 479 | . . . . 5 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
11 | ontri1 6398 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) | |
12 | 8, 10, 11 | syl2anc 582 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) |
13 | 12 | ralbidva 3166 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦)) |
14 | 13 | rexbidva 3167 | . 2 ⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦)) |
15 | 6, 14 | bitr4id 289 | 1 ⊢ (𝐴 ⊆ On → (¬ 𝐴 ⊆ ∪ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ⊆ wss 3940 ∪ cuni 4903 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-tr 5261 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6367 df-on 6368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |