MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcdv2 Structured version   Visualization version   GIF version

Theorem rspcdv2 3601
Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
rspcdv2.1 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcdv2.2 (𝜑𝐴𝐵)
rspcdv2.3 (𝜑 → ∀𝑥𝐵 𝜓)
Assertion
Ref Expression
rspcdv2 (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcdv2
StepHypRef Expression
1 rspcdv2.3 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
2 rspcdv2.2 . . 3 (𝜑𝐴𝐵)
3 rspcdv2.1 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3rspcdv 3598 . 2 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
51, 4mpd 15 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051
This theorem is referenced by:  frd  5623  ufdprmidl  33510  cantnf2  43283  imo72b2  44130
  Copyright terms: Public domain W3C validator