| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv2 | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rspcdv2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| rspcdv2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv2.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| rspcdv2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv2.3 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | |
| 2 | rspcdv2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | rspcdv2.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | rspcdv 3589 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 |
| This theorem is referenced by: frd 5603 ufdprmidl 33520 cantnf2 43286 imo72b2 44133 |
| Copyright terms: Public domain | W3C validator |