MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcdv2 Structured version   Visualization version   GIF version

Theorem rspcdv2 3547
Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
rspcdv2.1 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcdv2.2 (𝜑𝐴𝐵)
rspcdv2.3 (𝜑 → ∀𝑥𝐵 𝜓)
Assertion
Ref Expression
rspcdv2 (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcdv2
StepHypRef Expression
1 rspcdv2.3 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
2 rspcdv2.2 . . 3 (𝜑𝐴𝐵)
3 rspcdv2.1 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
42, 3rspcdv 3544 . 2 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
51, 4mpd 15 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069
This theorem is referenced by:  frd  5538  imo72b2  41645
  Copyright terms: Public domain W3C validator