![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcdv2 | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
rspcdv2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
rspcdv2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv2.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
rspcdv2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv2.3 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) | |
2 | rspcdv2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | rspcdv2.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | rspcdv 3627 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: frd 5656 ufdprmidl 33534 cantnf2 43287 imo72b2 44134 |
Copyright terms: Public domain | W3C validator |