Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2 Structured version   Visualization version   GIF version

Theorem imo72b2 44211
Description: IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2.4 (𝜑𝐵 ∈ ℝ)
imo72b2.5 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
imo72b2.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
imo72b2.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
Assertion
Ref Expression
imo72b2 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Distinct variable groups:   𝑢,𝐵,𝑣   𝑥,𝐵   𝑦,𝐵   𝑢,𝐹,𝑣   𝑥,𝐹   𝑦,𝐹   𝑢,𝐺,𝑣   𝑥,𝐺   𝑦,𝐺   𝜑,𝑢,𝑣   𝜑,𝑥   𝜑,𝑦,𝑢

Proof of Theorem imo72b2
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2.2 . . . . 5 (𝜑𝐺:ℝ⟶ℝ)
2 imo72b2.4 . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2ffvelcdmd 7018 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
43recnd 11140 . . 3 (𝜑 → (𝐺𝐵) ∈ ℂ)
54abscld 15346 . 2 (𝜑 → (abs‘(𝐺𝐵)) ∈ ℝ)
6 1red 11113 . 2 (𝜑 → 1 ∈ ℝ)
7 simpr 484 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 < (abs‘(𝐺𝐵)))
81adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐺:ℝ⟶ℝ)
92adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐵 ∈ ℝ)
108, 9ffvelcdmd 7018 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℝ)
1110recnd 11140 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℂ)
1211abscld 15346 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℝ)
136adantr 480 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 ∈ ℝ)
14 ax-resscn 11063 . . . . . . . . 9 ℝ ⊆ ℂ
15 imaco 6198 . . . . . . . . . . . 12 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1615eqcomi 2740 . . . . . . . . . . 11 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
17 imassrn 6020 . . . . . . . . . . . . 13 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1817a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
19 imo72b2.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐹:ℝ⟶ℝ)
21 absf 15245 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → abs:ℂ⟶ℝ)
2314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ⊆ ℂ)
2422, 23fssresd 6690 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ↾ ℝ):ℝ⟶ℝ)
2520, 24fco2d 44201 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ∘ 𝐹):ℝ⟶ℝ)
2625frnd 6659 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ran (abs ∘ 𝐹) ⊆ ℝ)
2718, 26sstrd 3945 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2816, 27eqsstrid 3973 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
29 0re 11114 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3029ne0ii 4294 . . . . . . . . . . . . . . 15 ℝ ≠ ∅
3130a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ≠ ∅)
3231, 25wnefimgd 44200 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3332necomd 2983 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3416a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3533, 34neeqtrrd 3002 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3635necomd 2983 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ≠ ∅)
37 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → 𝑐 = 1)
3837breq2d 5103 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
3938ralbidv 3155 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
40 imo72b2.6 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
4119, 40extoimad 44203 . . . . . . . . . . . 12 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4241adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4313, 39, 42rspcedvd 3579 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
4428, 36, 43suprcld 12085 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
4514, 44sselid 3932 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
4614, 12sselid 3932 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℂ)
4745, 46mulcomd 11133 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) = ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
4829a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 ∈ ℝ)
49 0lt1 11639 . . . . . . . . . . . . 13 0 < 1
5049a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < 1)
5148, 13, 12, 50, 7lttrd 11274 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < (abs‘(𝐺𝐵)))
5251gt0ne0d 11681 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≠ 0)
5344, 12, 52redivcld 11949 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))) ∈ ℝ)
5420adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
558adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐺:ℝ⟶ℝ)
56 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
579adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐵 ∈ ℝ)
58 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = 𝐵) → 𝑣 = 𝐵)
5958oveq2d 7362 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢 + 𝑣) = (𝑢 + 𝐵))
6059fveq2d 6826 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝐵)))
6158oveq2d 7362 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢𝑣) = (𝑢𝐵))
6261fveq2d 6826 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢𝑣)) = (𝐹‘(𝑢𝐵)))
6360, 62oveq12d 7364 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))))
6458fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝐺𝑣) = (𝐺𝐵))
6564oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → ((𝐹𝑢) · (𝐺𝑣)) = ((𝐹𝑢) · (𝐺𝐵)))
6665oveq2d 7362 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → (2 · ((𝐹𝑢) · (𝐺𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
6763, 66eqeq12d 2747 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 = 𝐵) → (((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
6867ralbidv 3155 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
69 imo72b2.5 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
70 ralcom 3260 . . . . . . . . . . . . . . . . . . 19 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7170biimpi 216 . . . . . . . . . . . . . . . . . 18 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))))
7372imp 406 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7469, 73mpdan 687 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7568, 2, 74rspcdv2 3572 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7675r19.21bi 3224 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7776adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7840ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
7954, 55, 56, 57, 77, 78imo72b2lem0 44204 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((abs‘(𝐹𝑢)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
80 0xr 11159 . . . . . . . . . . . . 13 0 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 ∈ ℝ*)
82 1xr 11171 . . . . . . . . . . . . 13 1 ∈ ℝ*
8382a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 ∈ ℝ*)
8412adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ)
8584rexrd 11162 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ*)
8649a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < 1)
87 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 < (abs‘(𝐺𝐵)))
8881, 83, 85, 86, 87xrlttrd 13058 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < (abs‘(𝐺𝐵)))
8920ffvelcdmda 7017 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℝ)
9089recnd 11140 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℂ)
9190abscld 15346 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ∈ ℝ)
9244adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
9379, 88, 84, 91, 92lemuldiv3d 44209 . . . . . . . . . 10 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9493ralrimiva 3124 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑢 ∈ ℝ (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9520, 53, 94imo72b2lem2 44206 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9695, 51, 12, 44, 44lemuldiv4d 44210 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
9747, 96eqbrtrrd 5115 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
98 imo72b2.7 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
9998adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
10040adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
10120, 99, 100imo72b2lem1 44208 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
10297, 101, 44, 12, 44lemuldiv3d 44209 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
10323, 44sseldd 3935 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
104101gt0ne0d 11681 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≠ 0)
105103, 104dividd 11895 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = 1)
106105eqcomd 2737 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
107102, 106breqtrrd 5119 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ 1)
10812, 13, 107lensymd 11264 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ¬ 1 < (abs‘(𝐺𝐵)))
1097, 108pm2.65da 816 . 2 (𝜑 → ¬ 1 < (abs‘(𝐺𝐵)))
1105, 6, 109nltled 11263 1 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283   class class class wbr 5091  ran crn 5617  cima 5619  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  2c2 12180  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator