Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2 Structured version   Visualization version   GIF version

Theorem imo72b2 43633
Description: IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2.4 (𝜑𝐵 ∈ ℝ)
imo72b2.5 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
imo72b2.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
imo72b2.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
Assertion
Ref Expression
imo72b2 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Distinct variable groups:   𝑢,𝐵,𝑣   𝑥,𝐵   𝑦,𝐵   𝑢,𝐹,𝑣   𝑥,𝐹   𝑦,𝐹   𝑢,𝐺,𝑣   𝑥,𝐺   𝑦,𝐺   𝜑,𝑢,𝑣   𝜑,𝑥   𝜑,𝑦,𝑢

Proof of Theorem imo72b2
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2.2 . . . . 5 (𝜑𝐺:ℝ⟶ℝ)
2 imo72b2.4 . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2ffvelcdmd 7100 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
43recnd 11280 . . 3 (𝜑 → (𝐺𝐵) ∈ ℂ)
54abscld 15423 . 2 (𝜑 → (abs‘(𝐺𝐵)) ∈ ℝ)
6 1red 11253 . 2 (𝜑 → 1 ∈ ℝ)
7 simpr 483 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 < (abs‘(𝐺𝐵)))
81adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐺:ℝ⟶ℝ)
92adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐵 ∈ ℝ)
108, 9ffvelcdmd 7100 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℝ)
1110recnd 11280 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℂ)
1211abscld 15423 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℝ)
136adantr 479 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 ∈ ℝ)
14 ax-resscn 11203 . . . . . . . . 9 ℝ ⊆ ℂ
15 imaco 6260 . . . . . . . . . . . 12 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1615eqcomi 2737 . . . . . . . . . . 11 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
17 imassrn 6079 . . . . . . . . . . . . 13 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1817a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
19 imo72b2.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
2019adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐹:ℝ⟶ℝ)
21 absf 15324 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → abs:ℂ⟶ℝ)
2314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ⊆ ℂ)
2422, 23fssresd 6769 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ↾ ℝ):ℝ⟶ℝ)
2520, 24fco2d 43623 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ∘ 𝐹):ℝ⟶ℝ)
2625frnd 6735 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ran (abs ∘ 𝐹) ⊆ ℝ)
2718, 26sstrd 3992 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2816, 27eqsstrid 4030 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
29 0re 11254 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3029ne0ii 4341 . . . . . . . . . . . . . . 15 ℝ ≠ ∅
3130a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ≠ ∅)
3231, 25wnefimgd 43622 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3332necomd 2993 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3416a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3533, 34neeqtrrd 3012 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3635necomd 2993 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ≠ ∅)
37 simpr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → 𝑐 = 1)
3837breq2d 5164 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
3938ralbidv 3175 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
40 imo72b2.6 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
4119, 40extoimad 43625 . . . . . . . . . . . 12 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4241adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4313, 39, 42rspcedvd 3613 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
4428, 36, 43suprcld 12215 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
4514, 44sselid 3980 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
4614, 12sselid 3980 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℂ)
4745, 46mulcomd 11273 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) = ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
4829a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 ∈ ℝ)
49 0lt1 11774 . . . . . . . . . . . . 13 0 < 1
5049a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < 1)
5148, 13, 12, 50, 7lttrd 11413 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < (abs‘(𝐺𝐵)))
5251gt0ne0d 11816 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≠ 0)
5344, 12, 52redivcld 12080 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))) ∈ ℝ)
5420adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
558adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐺:ℝ⟶ℝ)
56 simpr 483 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
579adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐵 ∈ ℝ)
58 simpr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = 𝐵) → 𝑣 = 𝐵)
5958oveq2d 7442 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢 + 𝑣) = (𝑢 + 𝐵))
6059fveq2d 6906 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝐵)))
6158oveq2d 7442 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢𝑣) = (𝑢𝐵))
6261fveq2d 6906 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢𝑣)) = (𝐹‘(𝑢𝐵)))
6360, 62oveq12d 7444 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))))
6458fveq2d 6906 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝐺𝑣) = (𝐺𝐵))
6564oveq2d 7442 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → ((𝐹𝑢) · (𝐺𝑣)) = ((𝐹𝑢) · (𝐺𝐵)))
6665oveq2d 7442 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → (2 · ((𝐹𝑢) · (𝐺𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
6763, 66eqeq12d 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 = 𝐵) → (((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
6867ralbidv 3175 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
69 imo72b2.5 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
70 ralcom 3284 . . . . . . . . . . . . . . . . . . 19 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7170biimpi 215 . . . . . . . . . . . . . . . . . 18 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))))
7372imp 405 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7469, 73mpdan 685 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7568, 2, 74rspcdv2 3606 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7675r19.21bi 3246 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7776adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7840ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
7954, 55, 56, 57, 77, 78imo72b2lem0 43626 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((abs‘(𝐹𝑢)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
80 0xr 11299 . . . . . . . . . . . . 13 0 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 ∈ ℝ*)
82 1xr 11311 . . . . . . . . . . . . 13 1 ∈ ℝ*
8382a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 ∈ ℝ*)
8412adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ)
8584rexrd 11302 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ*)
8649a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < 1)
87 simplr 767 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 < (abs‘(𝐺𝐵)))
8881, 83, 85, 86, 87xrlttrd 13178 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < (abs‘(𝐺𝐵)))
8920ffvelcdmda 7099 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℝ)
9089recnd 11280 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℂ)
9190abscld 15423 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ∈ ℝ)
9244adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
9379, 88, 84, 91, 92lemuldiv3d 43631 . . . . . . . . . 10 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9493ralrimiva 3143 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑢 ∈ ℝ (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9520, 53, 94imo72b2lem2 43628 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9695, 51, 12, 44, 44lemuldiv4d 43632 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
9747, 96eqbrtrrd 5176 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
98 imo72b2.7 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
9998adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
10040adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
10120, 99, 100imo72b2lem1 43630 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
10297, 101, 44, 12, 44lemuldiv3d 43631 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
10323, 44sseldd 3983 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
104101gt0ne0d 11816 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≠ 0)
105103, 104dividd 12026 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = 1)
106105eqcomd 2734 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
107102, 106breqtrrd 5180 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ 1)
10812, 13, 107lensymd 11403 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ¬ 1 < (abs‘(𝐺𝐵)))
1097, 108pm2.65da 815 . 2 (𝜑 → ¬ 1 < (abs‘(𝐺𝐵)))
1105, 6, 109nltled 11402 1 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  wss 3949  c0 4326   class class class wbr 5152  ran crn 5683  cima 5685  ccom 5686  wf 6549  cfv 6553  (class class class)co 7426  supcsup 9471  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  *cxr 11285   < clt 11286  cle 11287  cmin 11482   / cdiv 11909  2c2 12305  abscabs 15221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator