Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2 Structured version   Visualization version   GIF version

Theorem imo72b2 44196
Description: IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2.4 (𝜑𝐵 ∈ ℝ)
imo72b2.5 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
imo72b2.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
imo72b2.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
Assertion
Ref Expression
imo72b2 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Distinct variable groups:   𝑢,𝐵,𝑣   𝑥,𝐵   𝑦,𝐵   𝑢,𝐹,𝑣   𝑥,𝐹   𝑦,𝐹   𝑢,𝐺,𝑣   𝑥,𝐺   𝑦,𝐺   𝜑,𝑢,𝑣   𝜑,𝑥   𝜑,𝑦,𝑢

Proof of Theorem imo72b2
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2.2 . . . . 5 (𝜑𝐺:ℝ⟶ℝ)
2 imo72b2.4 . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2ffvelcdmd 7075 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
43recnd 11263 . . 3 (𝜑 → (𝐺𝐵) ∈ ℂ)
54abscld 15455 . 2 (𝜑 → (abs‘(𝐺𝐵)) ∈ ℝ)
6 1red 11236 . 2 (𝜑 → 1 ∈ ℝ)
7 simpr 484 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 < (abs‘(𝐺𝐵)))
81adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐺:ℝ⟶ℝ)
92adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐵 ∈ ℝ)
108, 9ffvelcdmd 7075 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℝ)
1110recnd 11263 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℂ)
1211abscld 15455 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℝ)
136adantr 480 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 ∈ ℝ)
14 ax-resscn 11186 . . . . . . . . 9 ℝ ⊆ ℂ
15 imaco 6240 . . . . . . . . . . . 12 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1615eqcomi 2744 . . . . . . . . . . 11 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
17 imassrn 6058 . . . . . . . . . . . . 13 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1817a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
19 imo72b2.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐹:ℝ⟶ℝ)
21 absf 15356 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → abs:ℂ⟶ℝ)
2314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ⊆ ℂ)
2422, 23fssresd 6745 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ↾ ℝ):ℝ⟶ℝ)
2520, 24fco2d 44186 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ∘ 𝐹):ℝ⟶ℝ)
2625frnd 6714 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ran (abs ∘ 𝐹) ⊆ ℝ)
2718, 26sstrd 3969 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2816, 27eqsstrid 3997 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
29 0re 11237 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3029ne0ii 4319 . . . . . . . . . . . . . . 15 ℝ ≠ ∅
3130a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ≠ ∅)
3231, 25wnefimgd 44185 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3332necomd 2987 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3416a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3533, 34neeqtrrd 3006 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3635necomd 2987 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ≠ ∅)
37 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → 𝑐 = 1)
3837breq2d 5131 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
3938ralbidv 3163 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
40 imo72b2.6 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
4119, 40extoimad 44188 . . . . . . . . . . . 12 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4241adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4313, 39, 42rspcedvd 3603 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
4428, 36, 43suprcld 12205 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
4514, 44sselid 3956 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
4614, 12sselid 3956 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℂ)
4745, 46mulcomd 11256 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) = ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
4829a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 ∈ ℝ)
49 0lt1 11759 . . . . . . . . . . . . 13 0 < 1
5049a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < 1)
5148, 13, 12, 50, 7lttrd 11396 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < (abs‘(𝐺𝐵)))
5251gt0ne0d 11801 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≠ 0)
5344, 12, 52redivcld 12069 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))) ∈ ℝ)
5420adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
558adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐺:ℝ⟶ℝ)
56 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
579adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐵 ∈ ℝ)
58 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = 𝐵) → 𝑣 = 𝐵)
5958oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢 + 𝑣) = (𝑢 + 𝐵))
6059fveq2d 6880 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝐵)))
6158oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢𝑣) = (𝑢𝐵))
6261fveq2d 6880 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢𝑣)) = (𝐹‘(𝑢𝐵)))
6360, 62oveq12d 7423 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))))
6458fveq2d 6880 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝐺𝑣) = (𝐺𝐵))
6564oveq2d 7421 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → ((𝐹𝑢) · (𝐺𝑣)) = ((𝐹𝑢) · (𝐺𝐵)))
6665oveq2d 7421 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → (2 · ((𝐹𝑢) · (𝐺𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
6763, 66eqeq12d 2751 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 = 𝐵) → (((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
6867ralbidv 3163 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
69 imo72b2.5 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
70 ralcom 3270 . . . . . . . . . . . . . . . . . . 19 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7170biimpi 216 . . . . . . . . . . . . . . . . . 18 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))))
7372imp 406 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7469, 73mpdan 687 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7568, 2, 74rspcdv2 3596 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7675r19.21bi 3234 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7776adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7840ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
7954, 55, 56, 57, 77, 78imo72b2lem0 44189 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((abs‘(𝐹𝑢)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
80 0xr 11282 . . . . . . . . . . . . 13 0 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 ∈ ℝ*)
82 1xr 11294 . . . . . . . . . . . . 13 1 ∈ ℝ*
8382a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 ∈ ℝ*)
8412adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ)
8584rexrd 11285 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ*)
8649a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < 1)
87 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 < (abs‘(𝐺𝐵)))
8881, 83, 85, 86, 87xrlttrd 13175 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < (abs‘(𝐺𝐵)))
8920ffvelcdmda 7074 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℝ)
9089recnd 11263 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℂ)
9190abscld 15455 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ∈ ℝ)
9244adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
9379, 88, 84, 91, 92lemuldiv3d 44194 . . . . . . . . . 10 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9493ralrimiva 3132 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑢 ∈ ℝ (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9520, 53, 94imo72b2lem2 44191 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9695, 51, 12, 44, 44lemuldiv4d 44195 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
9747, 96eqbrtrrd 5143 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
98 imo72b2.7 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
9998adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
10040adantr 480 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
10120, 99, 100imo72b2lem1 44193 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
10297, 101, 44, 12, 44lemuldiv3d 44194 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
10323, 44sseldd 3959 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
104101gt0ne0d 11801 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≠ 0)
105103, 104dividd 12015 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = 1)
106105eqcomd 2741 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
107102, 106breqtrrd 5147 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ 1)
10812, 13, 107lensymd 11386 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ¬ 1 < (abs‘(𝐺𝐵)))
1097, 108pm2.65da 816 . 2 (𝜑 → ¬ 1 < (abs‘(𝐺𝐵)))
1105, 6, 109nltled 11385 1 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   class class class wbr 5119  ran crn 5655  cima 5657  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  abscabs 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator