Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 228 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
4 | 1, 3 | rspcimdv 3541 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 |
This theorem is referenced by: rspcdv2 3546 rspcv 3547 ralxfrd 5326 ralxfrd2 5330 reuop 6185 suppofss1d 7991 suppofss2d 7992 zindd 12351 wrd2ind 14364 ismri2dad 17263 mreexd 17268 mreexexlemd 17270 catcocl 17311 catass 17312 moni 17365 subccocl 17476 funcco 17502 fullfo 17544 fthf1 17549 nati 17587 mndind 18381 idsrngd 20037 uspgr2wlkeq 27915 crctcshwlkn0lem4 28079 crctcshwlkn0lem5 28080 wwlknllvtx 28112 0enwwlksnge1 28130 wlkiswwlks2lem5 28139 clwlkclwwlklem2a 28263 clwlkclwwlklem2 28265 clwwisshclwws 28280 clwwlkinwwlk 28305 umgr2cwwk2dif 28329 wrdt2ind 31127 mgccole1 31170 mgccole2 31171 mgcmnt1 31172 mgcmntco 31174 dfmgc2lem 31175 rngurd 31384 fedgmullem2 31613 zart0 31731 zarcmplem 31733 esumcvg 31954 inelcarsg 32178 carsgclctunlem1 32184 orvcelel 32336 signsply0 32430 onint1 34565 qsalrel 40141 ismnushort 41808 ralbinrald 44501 fargshiftfva 44783 reupr 44862 evengpop3 45138 evengpoap3 45139 isomgrsym 45176 snlindsntorlem 45699 |
Copyright terms: Public domain | W3C validator |