![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
4 | 1, 3 | rspcimdv 3625 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: rspcdv2 3630 rspcv 3631 ralxfrd 5426 ralxfrd2 5430 reuop 6324 suppofss1d 8245 suppofss2d 8246 zindd 12744 wrd2ind 14771 ismri2dad 17695 mreexd 17700 mreexexlemd 17702 catcocl 17743 catass 17744 moni 17797 subccocl 17909 funcco 17935 fullfo 17979 fthf1 17984 nati 18023 mndind 18863 ringurd 20212 idsrngd 20879 mpomulcn 24910 fsumdvdsmul 27256 uspgr2wlkeq 29682 crctcshwlkn0lem4 29846 crctcshwlkn0lem5 29847 wwlknllvtx 29879 0enwwlksnge1 29897 wlkiswwlks2lem5 29906 clwlkclwwlklem2a 30030 clwlkclwwlklem2 30032 clwwisshclwws 30047 clwwlkinwwlk 30072 umgr2cwwk2dif 30096 wrdt2ind 32920 mgccole1 32963 mgccole2 32964 mgcmnt1 32965 mgcmntco 32967 dfmgc2lem 32968 chnind 32983 1arithufdlem3 33539 dfufd2 33543 fedgmullem2 33643 constrconj 33735 zart0 33825 zarcmplem 33827 esumcvg 34050 inelcarsg 34276 carsgclctunlem1 34282 orvcelel 34434 signsply0 34528 onint1 36415 qsalrel 42235 ismnushort 44270 ralbinrald 47037 fargshiftfva 47317 reupr 47396 evengpop3 47672 evengpoap3 47673 snlindsntorlem 48199 |
Copyright terms: Public domain | W3C validator |