Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 228 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
4 | 1, 3 | rspcimdv 3551 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 |
This theorem is referenced by: rspcdv2 3556 rspcv 3557 ralxfrd 5331 ralxfrd2 5335 reuop 6196 suppofss1d 8020 suppofss2d 8021 zindd 12421 wrd2ind 14436 ismri2dad 17346 mreexd 17351 mreexexlemd 17353 catcocl 17394 catass 17395 moni 17448 subccocl 17560 funcco 17586 fullfo 17628 fthf1 17633 nati 17671 mndind 18466 idsrngd 20122 uspgr2wlkeq 28013 crctcshwlkn0lem4 28178 crctcshwlkn0lem5 28179 wwlknllvtx 28211 0enwwlksnge1 28229 wlkiswwlks2lem5 28238 clwlkclwwlklem2a 28362 clwlkclwwlklem2 28364 clwwisshclwws 28379 clwwlkinwwlk 28404 umgr2cwwk2dif 28428 wrdt2ind 31225 mgccole1 31268 mgccole2 31269 mgcmnt1 31270 mgcmntco 31272 dfmgc2lem 31273 rngurd 31482 fedgmullem2 31711 zart0 31829 zarcmplem 31831 esumcvg 32054 inelcarsg 32278 carsgclctunlem1 32284 orvcelel 32436 signsply0 32530 onint1 34638 qsalrel 40215 ismnushort 41919 ralbinrald 44614 fargshiftfva 44895 reupr 44974 evengpop3 45250 evengpoap3 45251 isomgrsym 45288 snlindsntorlem 45811 |
Copyright terms: Public domain | W3C validator |