| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | rspcimdv 3567 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspcdv2 3572 rspcv 3573 ralxfrd 5347 ralxfrd2 5351 reuop 6241 suppofss1d 8137 suppofss2d 8138 zindd 12577 wrd2ind 14629 ismri2dad 17543 mreexd 17548 mreexexlemd 17550 catcocl 17591 catass 17592 moni 17643 subccocl 17752 funcco 17778 fullfo 17821 fthf1 17826 nati 17865 mndind 18702 ringurd 20070 idsrngd 20741 mpomulcn 24756 fsumdvdsmul 27103 uspgr2wlkeq 29591 crctcshwlkn0lem4 29758 crctcshwlkn0lem5 29759 wwlknllvtx 29791 0enwwlksnge1 29809 wlkiswwlks2lem5 29818 clwlkclwwlklem2a 29942 clwlkclwwlklem2 29944 clwwisshclwws 29959 clwwlkinwwlk 29984 umgr2cwwk2dif 30008 wrdt2ind 32895 mgccole1 32932 mgccole2 32933 mgcmnt1 32934 mgcmntco 32936 dfmgc2lem 32937 chnind 32953 1arithufdlem3 33483 dfufd2 33487 fedgmullem2 33597 constrconj 33712 zart0 33846 zarcmplem 33848 esumcvg 34053 inelcarsg 34279 carsgclctunlem1 34285 orvcelel 34438 signsply0 34519 onint1 36423 qsalrel 42213 ismnushort 44274 ralbinrald 47106 fargshiftfva 47427 reupr 47506 evengpop3 47782 evengpoap3 47783 snlindsntorlem 48455 |
| Copyright terms: Public domain | W3C validator |