MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcdv Structured version   Visualization version   GIF version

Theorem rspcdv 3580
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcdv
StepHypRef Expression
1 rspcdv.1 . 2 (𝜑𝐴𝐵)
2 rspcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimpd 229 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
41, 3rspcimdv 3578 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045
This theorem is referenced by:  rspcdv2  3583  rspcv  3584  ralxfrd  5363  ralxfrd2  5367  reuop  6266  suppofss1d  8183  suppofss2d  8184  zindd  12635  wrd2ind  14688  ismri2dad  17598  mreexd  17603  mreexexlemd  17605  catcocl  17646  catass  17647  moni  17698  subccocl  17807  funcco  17833  fullfo  17876  fthf1  17881  nati  17920  mndind  18755  ringurd  20094  idsrngd  20765  mpomulcn  24758  fsumdvdsmul  27105  uspgr2wlkeq  29574  crctcshwlkn0lem4  29743  crctcshwlkn0lem5  29744  wwlknllvtx  29776  0enwwlksnge1  29794  wlkiswwlks2lem5  29803  clwlkclwwlklem2a  29927  clwlkclwwlklem2  29929  clwwisshclwws  29944  clwwlkinwwlk  29969  umgr2cwwk2dif  29993  wrdt2ind  32875  mgccole1  32916  mgccole2  32917  mgcmnt1  32918  mgcmntco  32920  dfmgc2lem  32921  chnind  32937  1arithufdlem3  33517  dfufd2  33521  fedgmullem2  33626  constrconj  33735  zart0  33869  zarcmplem  33871  esumcvg  34076  inelcarsg  34302  carsgclctunlem1  34308  orvcelel  34461  signsply0  34542  onint1  36437  qsalrel  42228  ismnushort  44290  ralbinrald  47123  fargshiftfva  47444  reupr  47523  evengpop3  47799  evengpoap3  47800  snlindsntorlem  48459
  Copyright terms: Public domain W3C validator