| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | rspcimdv 3596 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 |
| This theorem is referenced by: rspcdv2 3601 rspcv 3602 ralxfrd 5383 ralxfrd2 5387 reuop 6287 suppofss1d 8208 suppofss2d 8209 zindd 12699 wrd2ind 14746 ismri2dad 17654 mreexd 17659 mreexexlemd 17661 catcocl 17702 catass 17703 moni 17754 subccocl 17863 funcco 17889 fullfo 17932 fthf1 17937 nati 17976 mndind 18811 ringurd 20150 idsrngd 20821 mpomulcn 24814 fsumdvdsmul 27162 uspgr2wlkeq 29631 crctcshwlkn0lem4 29800 crctcshwlkn0lem5 29801 wwlknllvtx 29833 0enwwlksnge1 29851 wlkiswwlks2lem5 29860 clwlkclwwlklem2a 29984 clwlkclwwlklem2 29986 clwwisshclwws 30001 clwwlkinwwlk 30026 umgr2cwwk2dif 30050 wrdt2ind 32934 mgccole1 32975 mgccole2 32976 mgcmnt1 32977 mgcmntco 32979 dfmgc2lem 32980 chnind 32996 1arithufdlem3 33566 dfufd2 33570 fedgmullem2 33675 constrconj 33784 zart0 33915 zarcmplem 33917 esumcvg 34122 inelcarsg 34348 carsgclctunlem1 34354 orvcelel 34507 signsply0 34588 onint1 36472 qsalrel 42258 ismnushort 44292 ralbinrald 47118 fargshiftfva 47424 reupr 47503 evengpop3 47779 evengpoap3 47780 snlindsntorlem 48413 |
| Copyright terms: Public domain | W3C validator |