| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | rspcimdv 3578 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspcdv2 3583 rspcv 3584 ralxfrd 5363 ralxfrd2 5367 reuop 6266 suppofss1d 8183 suppofss2d 8184 zindd 12635 wrd2ind 14688 ismri2dad 17598 mreexd 17603 mreexexlemd 17605 catcocl 17646 catass 17647 moni 17698 subccocl 17807 funcco 17833 fullfo 17876 fthf1 17881 nati 17920 mndind 18755 ringurd 20094 idsrngd 20765 mpomulcn 24758 fsumdvdsmul 27105 uspgr2wlkeq 29574 crctcshwlkn0lem4 29743 crctcshwlkn0lem5 29744 wwlknllvtx 29776 0enwwlksnge1 29794 wlkiswwlks2lem5 29803 clwlkclwwlklem2a 29927 clwlkclwwlklem2 29929 clwwisshclwws 29944 clwwlkinwwlk 29969 umgr2cwwk2dif 29993 wrdt2ind 32875 mgccole1 32916 mgccole2 32917 mgcmnt1 32918 mgcmntco 32920 dfmgc2lem 32921 chnind 32937 1arithufdlem3 33517 dfufd2 33521 fedgmullem2 33626 constrconj 33735 zart0 33869 zarcmplem 33871 esumcvg 34076 inelcarsg 34302 carsgclctunlem1 34308 orvcelel 34461 signsply0 34542 onint1 36437 qsalrel 42228 ismnushort 44290 ralbinrald 47123 fargshiftfva 47444 reupr 47523 evengpop3 47799 evengpoap3 47800 snlindsntorlem 48459 |
| Copyright terms: Public domain | W3C validator |