Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 228 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
4 | 1, 3 | rspcimdv 3560 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 |
This theorem is referenced by: rspcdv2 3565 rspcv 3566 ralxfrd 5344 ralxfrd2 5348 reuop 6216 suppofss1d 8065 suppofss2d 8066 zindd 12491 wrd2ind 14505 ismri2dad 17413 mreexd 17418 mreexexlemd 17420 catcocl 17461 catass 17462 moni 17515 subccocl 17627 funcco 17653 fullfo 17695 fthf1 17700 nati 17738 mndind 18533 idsrngd 20193 uspgr2wlkeq 28121 crctcshwlkn0lem4 28286 crctcshwlkn0lem5 28287 wwlknllvtx 28319 0enwwlksnge1 28337 wlkiswwlks2lem5 28346 clwlkclwwlklem2a 28470 clwlkclwwlklem2 28472 clwwisshclwws 28487 clwwlkinwwlk 28512 umgr2cwwk2dif 28536 wrdt2ind 31333 mgccole1 31376 mgccole2 31377 mgcmnt1 31378 mgcmntco 31380 dfmgc2lem 31381 rngurd 31590 fedgmullem2 31817 zart0 31935 zarcmplem 31937 esumcvg 32160 inelcarsg 32384 carsgclctunlem1 32390 orvcelel 32542 signsply0 32636 onint1 34699 qsalrel 40425 ismnushort 42147 ralbinrald 44873 fargshiftfva 45154 reupr 45233 evengpop3 45509 evengpoap3 45510 isomgrsym 45547 snlindsntorlem 46070 |
Copyright terms: Public domain | W3C validator |