| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | rspcimdv 3562 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: rspcdv2 3567 rspcv 3568 ralxfrd 5341 ralxfrd2 5345 reuop 6235 suppofss1d 8129 suppofss2d 8130 zindd 12569 wrd2ind 14625 ismri2dad 17538 mreexd 17543 mreexexlemd 17545 catcocl 17586 catass 17587 moni 17638 subccocl 17747 funcco 17773 fullfo 17816 fthf1 17821 nati 17860 chnind 18522 mndind 18731 ringurd 20098 idsrngd 20766 mpomulcn 24780 fsumdvdsmul 27127 uspgr2wlkeq 29619 crctcshwlkn0lem4 29786 crctcshwlkn0lem5 29787 wwlknllvtx 29819 0enwwlksnge1 29837 wlkiswwlks2lem5 29846 clwlkclwwlklem2a 29970 clwlkclwwlklem2 29972 clwwisshclwws 29987 clwwlkinwwlk 30012 umgr2cwwk2dif 30036 wrdt2ind 32926 mgccole1 32963 mgccole2 32964 mgcmnt1 32965 mgcmntco 32967 dfmgc2lem 32968 1arithufdlem3 33503 dfufd2 33507 fedgmullem2 33635 constrconj 33750 zart0 33884 zarcmplem 33886 esumcvg 34091 inelcarsg 34316 carsgclctunlem1 34322 orvcelel 34475 signsply0 34556 onint1 36483 qsalrel 42273 ismnushort 44334 ralbinrald 47153 fargshiftfva 47474 reupr 47553 evengpop3 47829 evengpoap3 47830 snlindsntorlem 48502 |
| Copyright terms: Public domain | W3C validator |