Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 232 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
4 | 1, 3 | rspcimdv 3531 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 |
This theorem is referenced by: rspcv 3536 ralxfrd 5277 ralxfrd2 5281 reuop 6122 suppofss1d 7878 suppofss2d 7879 zindd 12122 wrd2ind 14132 ismri2dad 16966 mreexd 16971 mreexexlemd 16973 catcocl 17014 catass 17015 moni 17065 subccocl 17174 funcco 17200 fullfo 17241 fthf1 17246 nati 17284 mndind 18058 idsrngd 19701 uspgr2wlkeq 27534 crctcshwlkn0lem4 27698 crctcshwlkn0lem5 27699 wwlknllvtx 27731 0enwwlksnge1 27749 wlkiswwlks2lem5 27758 clwlkclwwlklem2a 27882 clwlkclwwlklem2 27884 clwwisshclwws 27899 clwwlkinwwlk 27924 umgr2cwwk2dif 27948 wrdt2ind 30749 mgccole1 30794 mgccole2 30795 mgcmnt1 30796 mgcmntco 30798 dfmgc2lem 30799 rngurd 31008 fedgmullem2 31232 zart0 31350 zarcmplem 31352 esumcvg 31573 inelcarsg 31797 carsgclctunlem1 31803 orvcelel 31955 signsply0 32049 onint1 34187 qsalrel 39721 rspcdvinvd 41250 ralbinrald 44046 fargshiftfva 44328 reupr 44407 evengpop3 44683 evengpoap3 44684 isomgrsym 44721 snlindsntorlem 45244 |
Copyright terms: Public domain | W3C validator |