| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | rspcimdv 3575 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspcdv2 3580 rspcv 3581 ralxfrd 5358 ralxfrd2 5362 reuop 6254 suppofss1d 8160 suppofss2d 8161 zindd 12611 wrd2ind 14664 ismri2dad 17574 mreexd 17579 mreexexlemd 17581 catcocl 17622 catass 17623 moni 17674 subccocl 17783 funcco 17809 fullfo 17852 fthf1 17857 nati 17896 mndind 18731 ringurd 20070 idsrngd 20741 mpomulcn 24734 fsumdvdsmul 27081 uspgr2wlkeq 29549 crctcshwlkn0lem4 29716 crctcshwlkn0lem5 29717 wwlknllvtx 29749 0enwwlksnge1 29767 wlkiswwlks2lem5 29776 clwlkclwwlklem2a 29900 clwlkclwwlklem2 29902 clwwisshclwws 29917 clwwlkinwwlk 29942 umgr2cwwk2dif 29966 wrdt2ind 32848 mgccole1 32889 mgccole2 32890 mgcmnt1 32891 mgcmntco 32893 dfmgc2lem 32894 chnind 32910 1arithufdlem3 33490 dfufd2 33494 fedgmullem2 33599 constrconj 33708 zart0 33842 zarcmplem 33844 esumcvg 34049 inelcarsg 34275 carsgclctunlem1 34281 orvcelel 34434 signsply0 34515 onint1 36410 qsalrel 42201 ismnushort 44263 ralbinrald 47096 fargshiftfva 47417 reupr 47496 evengpop3 47772 evengpoap3 47773 snlindsntorlem 48432 |
| Copyright terms: Public domain | W3C validator |