MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcdv Structured version   Visualization version   GIF version

Theorem rspcdv 3598
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcdv (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcdv
StepHypRef Expression
1 rspcdv.1 . 2 (𝜑𝐴𝐵)
2 rspcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimpd 229 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
41, 3rspcimdv 3596 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053
This theorem is referenced by:  rspcdv2  3601  rspcv  3602  ralxfrd  5383  ralxfrd2  5387  reuop  6287  suppofss1d  8208  suppofss2d  8209  zindd  12699  wrd2ind  14746  ismri2dad  17654  mreexd  17659  mreexexlemd  17661  catcocl  17702  catass  17703  moni  17754  subccocl  17863  funcco  17889  fullfo  17932  fthf1  17937  nati  17976  mndind  18811  ringurd  20150  idsrngd  20821  mpomulcn  24814  fsumdvdsmul  27162  uspgr2wlkeq  29631  crctcshwlkn0lem4  29800  crctcshwlkn0lem5  29801  wwlknllvtx  29833  0enwwlksnge1  29851  wlkiswwlks2lem5  29860  clwlkclwwlklem2a  29984  clwlkclwwlklem2  29986  clwwisshclwws  30001  clwwlkinwwlk  30026  umgr2cwwk2dif  30050  wrdt2ind  32934  mgccole1  32975  mgccole2  32976  mgcmnt1  32977  mgcmntco  32979  dfmgc2lem  32980  chnind  32996  1arithufdlem3  33566  dfufd2  33570  fedgmullem2  33675  constrconj  33784  zart0  33915  zarcmplem  33917  esumcvg  34122  inelcarsg  34348  carsgclctunlem1  34354  orvcelel  34507  signsply0  34588  onint1  36472  qsalrel  42258  ismnushort  44292  ralbinrald  47118  fargshiftfva  47424  reupr  47503  evengpop3  47779  evengpoap3  47780  snlindsntorlem  48413
  Copyright terms: Public domain W3C validator