| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | rspcimdv 3581 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 |
| This theorem is referenced by: rspcdv2 3586 rspcv 3587 ralxfrd 5366 ralxfrd2 5370 reuop 6269 suppofss1d 8186 suppofss2d 8187 zindd 12642 wrd2ind 14695 ismri2dad 17605 mreexd 17610 mreexexlemd 17612 catcocl 17653 catass 17654 moni 17705 subccocl 17814 funcco 17840 fullfo 17883 fthf1 17888 nati 17927 mndind 18762 ringurd 20101 idsrngd 20772 mpomulcn 24765 fsumdvdsmul 27112 uspgr2wlkeq 29581 crctcshwlkn0lem4 29750 crctcshwlkn0lem5 29751 wwlknllvtx 29783 0enwwlksnge1 29801 wlkiswwlks2lem5 29810 clwlkclwwlklem2a 29934 clwlkclwwlklem2 29936 clwwisshclwws 29951 clwwlkinwwlk 29976 umgr2cwwk2dif 30000 wrdt2ind 32882 mgccole1 32923 mgccole2 32924 mgcmnt1 32925 mgcmntco 32927 dfmgc2lem 32928 chnind 32944 1arithufdlem3 33524 dfufd2 33528 fedgmullem2 33633 constrconj 33742 zart0 33876 zarcmplem 33878 esumcvg 34083 inelcarsg 34309 carsgclctunlem1 34315 orvcelel 34468 signsply0 34549 onint1 36444 qsalrel 42235 ismnushort 44297 ralbinrald 47127 fargshiftfva 47448 reupr 47527 evengpop3 47803 evengpoap3 47804 snlindsntorlem 48463 |
| Copyright terms: Public domain | W3C validator |