MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcebdv Structured version   Visualization version   GIF version

Theorem rspcebdv 3545
Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
rspcebdv.1 ((𝜑𝜓) → 𝑥 = 𝐴)
Assertion
Ref Expression
rspcebdv (𝜑 → (∃𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcebdv
StepHypRef Expression
1 rspcebdv.1 . . . . . . 7 ((𝜑𝜓) → 𝑥 = 𝐴)
2 rspcdv.2 . . . . . . 7 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
31, 2syldan 590 . . . . . 6 ((𝜑𝜓) → (𝜓𝜒))
43biimpd 228 . . . . 5 ((𝜑𝜓) → (𝜓𝜒))
54expcom 413 . . . 4 (𝜓 → (𝜑 → (𝜓𝜒)))
65pm2.43b 55 . . 3 (𝜑 → (𝜓𝜒))
76rexlimdvw 3218 . 2 (𝜑 → (∃𝑥𝐵 𝜓𝜒))
8 rspcdv.1 . . 3 (𝜑𝐴𝐵)
98, 2rspcedv 3544 . 2 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
107, 9impbid 211 1 (𝜑 → (∃𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069
This theorem is referenced by:  fusgr2wsp2nb  28599
  Copyright terms: Public domain W3C validator