MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frd Structured version   Visualization version   GIF version

Theorem frd 5636
Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (deduction form). (Contributed by BJ, 16-Nov-2024.)
Hypotheses
Ref Expression
frd.fr (𝜑𝑅 Fr 𝐴)
frd.ss (𝜑𝐵𝐴)
frd.ex (𝜑𝐵𝑉)
frd.n0 (𝜑𝐵 ≠ ∅)
Assertion
Ref Expression
frd (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem frd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . 3 ((𝜑𝑧 = 𝐵) → 𝑧 = 𝐵)
2 biidd 262 . . . 4 ((𝜑𝑧 = 𝐵) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑥))
31, 2raleqbidv 3343 . . 3 ((𝜑𝑧 = 𝐵) → (∀𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
41, 3rexeqbidv 3344 . 2 ((𝜑𝑧 = 𝐵) → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5 frd.ex . . . 4 (𝜑𝐵𝑉)
6 frd.ss . . . 4 (𝜑𝐵𝐴)
75, 6elpwd 4609 . . 3 (𝜑𝐵 ∈ 𝒫 𝐴)
8 frd.n0 . . . 4 (𝜑𝐵 ≠ ∅)
9 nelsn 4669 . . . 4 (𝐵 ≠ ∅ → ¬ 𝐵 ∈ {∅})
108, 9syl 17 . . 3 (𝜑 → ¬ 𝐵 ∈ {∅})
117, 10eldifd 3960 . 2 (𝜑𝐵 ∈ (𝒫 𝐴 ∖ {∅}))
12 frd.fr . . 3 (𝜑𝑅 Fr 𝐴)
13 dffr6 5635 . . 3 (𝑅 Fr 𝐴 ↔ ∀𝑧 ∈ (𝒫 𝐴 ∖ {∅})∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥)
1412, 13sylib 217 . 2 (𝜑 → ∀𝑧 ∈ (𝒫 𝐴 ∖ {∅})∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥)
154, 11, 14rspcdv2 3608 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3946  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629   class class class wbr 5149   Fr wfr 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-v 3477  df-dif 3952  df-in 3956  df-ss 3966  df-pw 4605  df-sn 4630  df-fr 5632
This theorem is referenced by:  fri  5637  frxp3  8137
  Copyright terms: Public domain W3C validator