| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frd | Structured version Visualization version GIF version | ||
| Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (deduction form). (Contributed by BJ, 16-Nov-2024.) |
| Ref | Expression |
|---|---|
| frd.fr | ⊢ (𝜑 → 𝑅 Fr 𝐴) |
| frd.ss | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| frd.ex | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| frd.n0 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
| Ref | Expression |
|---|---|
| frd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
| 2 | biidd 262 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝐵) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑥)) | |
| 3 | 1, 2 | raleqbidv 3330 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝐵) → (∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
| 4 | 1, 3 | rexeqbidv 3331 | . 2 ⊢ ((𝜑 ∧ 𝑧 = 𝐵) → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
| 5 | frd.ex | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 6 | frd.ss | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 7 | 5, 6 | elpwd 4588 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
| 8 | frd.n0 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
| 9 | nelsn 4648 | . . . 4 ⊢ (𝐵 ≠ ∅ → ¬ 𝐵 ∈ {∅}) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ {∅}) |
| 11 | 7, 10 | eldifd 3944 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝒫 𝐴 ∖ {∅})) |
| 12 | frd.fr | . . 3 ⊢ (𝜑 → 𝑅 Fr 𝐴) | |
| 13 | dffr6 5622 | . . 3 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑧 ∈ (𝒫 𝐴 ∖ {∅})∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ (𝒫 𝐴 ∖ {∅})∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) |
| 15 | 4, 11, 14 | rspcdv2 3601 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∖ cdif 3930 ⊆ wss 3933 ∅c0 4315 𝒫 cpw 4582 {csn 4608 class class class wbr 5125 Fr wfr 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-v 3466 df-dif 3936 df-ss 3950 df-pw 4584 df-sn 4609 df-fr 5619 |
| This theorem is referenced by: fri 5624 frxp3 8159 weiunfr 36409 |
| Copyright terms: Public domain | W3C validator |