MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8fOLD Structured version   Visualization version   GIF version

Theorem sb8fOLD 2351
Description: Obsolete version of sb8f 2350 as of 5-Dec-2024. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb8f.nf 𝑦𝜑
Assertion
Ref Expression
sb8fOLD (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8fOLD
StepHypRef Expression
1 sb8f.nf . 2 𝑦𝜑
2 nfs1v 2154 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2244 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvalv1 2338 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1540  wnf 1786  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-11 2155  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator