| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb8ef | Structured version Visualization version GIF version | ||
| Description: Substitution of variable in existential quantifier. Version of sb8e 2523 with a disjoint variable condition, not requiring ax-13 2377. (Contributed by NM, 12-Aug-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) |
| Ref | Expression |
|---|---|
| sb8f.nf | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| sb8ef | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8f.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfs1v 2156 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 3 | sbequ12 2251 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvexv1 2344 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: 2sb8ef 2359 sbnf2 2361 mo3 2564 bnj985v 34967 sbcexf 38122 |
| Copyright terms: Public domain | W3C validator |