MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8ef Structured version   Visualization version   GIF version

Theorem sb8ef 2353
Description: Substitution of variable in existential quantifier. Version of sb8e 2522 with a disjoint variable condition, not requiring ax-13 2372. (Contributed by NM, 12-Aug-1993.) (Revised by Wolf Lammen, 19-Jan-2023.)
Hypothesis
Ref Expression
sb8f.nf 𝑦𝜑
Assertion
Ref Expression
sb8ef (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8ef
StepHypRef Expression
1 sb8f.nf . 2 𝑦𝜑
2 nfs1v 2153 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2244 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvexv1 2339 1 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  2sb8ef  2354  sbnf2  2356  mo3  2564  cbvmowOLD  2604  bnj985v  32933  sbcexf  36273
  Copyright terms: Public domain W3C validator