Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8ef | Structured version Visualization version GIF version |
Description: Substitution of variable in existential quantifier. Version of sb8e 2522 with a disjoint variable condition, not requiring ax-13 2372. (Contributed by NM, 12-Aug-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) |
Ref | Expression |
---|---|
sb8f.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8ef | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8f.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfs1v 2153 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | sbequ12 2244 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvexv1 2339 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: 2sb8ef 2354 sbnf2 2356 mo3 2564 cbvmowOLD 2604 bnj985v 32933 sbcexf 36273 |
Copyright terms: Public domain | W3C validator |