MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8f Structured version   Visualization version   GIF version

Theorem sb8f 2359
Description: Substitution of variable in universal quantifier. Version of sb8 2525 with a disjoint variable condition, not requiring ax-10 2141 or ax-13 2380. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) Avoid ax-10 2141. (Revised by SN, 5-Dec-2024.)
Hypothesis
Ref Expression
sb8f.nf 𝑦𝜑
Assertion
Ref Expression
sb8f (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8f
StepHypRef Expression
1 sb6 2085 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
21albii 1817 . 2 (∀𝑦[𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑥(𝑥 = 𝑦𝜑))
3 alcom 2160 . 2 (∀𝑦𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝑦(𝑥 = 𝑦𝜑))
4 sb6 2085 . . . 4 ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑥𝜑))
5 sb8f.nf . . . . 5 𝑦𝜑
65sbf 2272 . . . 4 ([𝑥 / 𝑦]𝜑𝜑)
7 equcom 2017 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
87imbi1i 349 . . . . 5 ((𝑦 = 𝑥𝜑) ↔ (𝑥 = 𝑦𝜑))
98albii 1817 . . . 4 (∀𝑦(𝑦 = 𝑥𝜑) ↔ ∀𝑦(𝑥 = 𝑦𝜑))
104, 6, 93bitr3ri 302 . . 3 (∀𝑦(𝑥 = 𝑦𝜑) ↔ 𝜑)
1110albii 1817 . 2 (∀𝑥𝑦(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝜑)
122, 3, 113bitrri 298 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  mo5f  32517  ax11-pm2  36802  bj-nfcf  36889
  Copyright terms: Public domain W3C validator