Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8f | Structured version Visualization version GIF version |
Description: Substitution of variable in universal quantifier. Version of sb8 2521 with a disjoint variable condition, not requiring ax-10 2137 or ax-13 2372. (Contributed by NM, 16-May-1993.) (Revised by Wolf Lammen, 19-Jan-2023.) Avoid ax-10 2137. (Revised by SN, 5-Dec-2024.) |
Ref | Expression |
---|---|
sb8f.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8f | ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2088 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | 1 | albii 1822 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥]𝜑 ↔ ∀𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
3 | alcom 2156 | . 2 ⊢ (∀𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑)) | |
4 | sb6 2088 | . . . 4 ⊢ ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → 𝜑)) | |
5 | sb8f.nf | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
6 | 5 | sbf 2263 | . . . 4 ⊢ ([𝑥 / 𝑦]𝜑 ↔ 𝜑) |
7 | equcom 2021 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
8 | 7 | imbi1i 350 | . . . . 5 ⊢ ((𝑦 = 𝑥 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) |
9 | 8 | albii 1822 | . . . 4 ⊢ (∀𝑦(𝑦 = 𝑥 → 𝜑) ↔ ∀𝑦(𝑥 = 𝑦 → 𝜑)) |
10 | 4, 6, 9 | 3bitr3ri 302 | . . 3 ⊢ (∀𝑦(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
11 | 10 | albii 1822 | . 2 ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥𝜑) |
12 | 2, 3, 11 | 3bitrri 298 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: mo5f 30837 ax11-pm2 35019 bj-nfcf 35111 |
Copyright terms: Public domain | W3C validator |