![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcni | Structured version Visualization version GIF version |
Description: Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbcni.1 | ⊢ 𝐴 ∈ V |
sbcni.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcni | ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcni.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | sbcng 3827 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑) |
4 | sbcni.2 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
5 | 3, 4 | xchbinx 333 | 1 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2099 Vcvv 3462 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-sbc 3777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |