| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcni | Structured version Visualization version GIF version | ||
| Description: Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
| Ref | Expression |
|---|---|
| sbcni.1 | ⊢ 𝐴 ∈ V |
| sbcni.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcni | ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcni.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | sbcng 3809 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑) |
| 4 | sbcni.2 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
| 5 | 3, 4 | xchbinx 334 | 1 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 Vcvv 3455 [wsbc 3761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3762 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |