| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsb3 | Structured version Visualization version GIF version | ||
| Description: equsb3 2102 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-equsb3 | ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 2151 | . . . 4 ⊢ Ⅎ𝑦 ¬ ∀𝑦 𝑦 = 𝑧 | |
| 2 | nfeqf2 2380 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑤 = 𝑧) | |
| 3 | equequ1 2023 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 = 𝑧 ↔ 𝑤 = 𝑧)) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → (𝑦 = 𝑤 → (𝑦 = 𝑧 ↔ 𝑤 = 𝑧))) |
| 5 | 1, 2, 4 | sbied 2506 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑤 / 𝑦]𝑦 = 𝑧 ↔ 𝑤 = 𝑧)) |
| 6 | 5 | sbbidv 2078 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤]𝑤 = 𝑧)) |
| 7 | sbco2vv 2098 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧) | |
| 8 | equsb3 2102 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 = 𝑧 ↔ 𝑥 = 𝑧) | |
| 9 | 6, 7, 8 | 3bitr3g 313 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |