Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsb3 | Structured version Visualization version GIF version |
Description: equsb3 2103 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019.) |
Ref | Expression |
---|---|
wl-equsb3 | ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2151 | . . . 4 ⊢ Ⅎ𝑦 ¬ ∀𝑦 𝑦 = 𝑧 | |
2 | nfeqf2 2377 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑤 = 𝑧) | |
3 | equequ1 2029 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 = 𝑧 ↔ 𝑤 = 𝑧)) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → (𝑦 = 𝑤 → (𝑦 = 𝑧 ↔ 𝑤 = 𝑧))) |
5 | 1, 2, 4 | sbied 2507 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑤 / 𝑦]𝑦 = 𝑧 ↔ 𝑤 = 𝑧)) |
6 | 5 | sbbidv 2083 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑤]𝑤 = 𝑧)) |
7 | sbco2vv 2102 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝑧 ↔ [𝑥 / 𝑦]𝑦 = 𝑧) | |
8 | equsb3 2103 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 = 𝑧 ↔ 𝑥 = 𝑧) | |
9 | 6, 7, 8 | 3bitr3g 312 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |