| Step | Hyp | Ref
| Expression |
| 1 | | 2reu8i.w |
. . . . 5
⊢ (𝑦 = 𝑤 → (𝜑 ↔ 𝜒)) |
| 2 | 1 | reu8 3739 |
. . . 4
⊢
(∃!𝑦 ∈
𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤))) |
| 3 | 2 | reubii 3389 |
. . 3
⊢
(∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤))) |
| 4 | | 2reu8i.x |
. . . . . 6
⊢ (𝑥 = 𝑣 → (𝜑 ↔ 𝜏)) |
| 5 | | 2reu8i.v |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → (𝜒 ↔ 𝜃)) |
| 6 | 5 | imbi1d 341 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → ((𝜒 → 𝑦 = 𝑤) ↔ (𝜃 → 𝑦 = 𝑤))) |
| 7 | 6 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = 𝑣 → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤))) |
| 8 | 4, 7 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = 𝑣 → ((𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ↔ (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)))) |
| 9 | 8 | rexbidv 3179 |
. . . 4
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ↔ ∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)))) |
| 10 | 9 | reu8 3739 |
. . 3
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣))) |
| 11 | 3, 10 | bitri 275 |
. 2
⊢
(∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣))) |
| 12 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑢(𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) |
| 13 | | nfs1v 2156 |
. . . . . . . . . 10
⊢
Ⅎ𝑦[𝑢 / 𝑦]𝜏 |
| 14 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐵 |
| 15 | | nfs1v 2156 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦[𝑢 / 𝑦]𝜃 |
| 16 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑢 = 𝑤 |
| 17 | 15, 16 | nfim 1896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) |
| 18 | 14, 17 | nfralw 3311 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) |
| 19 | 13, 18 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑦([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) |
| 20 | | sbequ12 2251 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (𝜏 ↔ [𝑢 / 𝑦]𝜏)) |
| 21 | | sbequ12 2251 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝜃 ↔ [𝑢 / 𝑦]𝜃)) |
| 22 | | equequ1 2024 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝑦 = 𝑤 ↔ 𝑢 = 𝑤)) |
| 23 | 21, 22 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → ((𝜃 → 𝑦 = 𝑤) ↔ ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤))) |
| 24 | 23 | ralbidv 3178 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤))) |
| 25 | 20, 24 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → ((𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) ↔ ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)))) |
| 26 | 12, 19, 25 | cbvrexw 3307 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) ↔ ∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤))) |
| 27 | 26 | imbi1i 349 |
. . . . . . 7
⊢
((∃𝑦 ∈
𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣) ↔ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) |
| 28 | 27 | ralbii 3093 |
. . . . . 6
⊢
(∀𝑣 ∈
𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣) ↔ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) |
| 29 | 28 | anbi2i 623 |
. . . . 5
⊢
((∃𝑦 ∈
𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣)) ↔ (∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) |
| 30 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑦𝐴 |
| 31 | 14, 19 | nfrexw 3313 |
. . . . . . . 8
⊢
Ⅎ𝑦∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) |
| 32 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑥 = 𝑣 |
| 33 | 31, 32 | nfim 1896 |
. . . . . . 7
⊢
Ⅎ𝑦(∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣) |
| 34 | 30, 33 | nfralw 3311 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣) |
| 35 | 34 | r19.41 3263 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 ((𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) ↔ (∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) |
| 36 | 29, 35 | bitr4i 278 |
. . . 4
⊢
((∃𝑦 ∈
𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣)) ↔ ∃𝑦 ∈ 𝐵 ((𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) |
| 37 | | r19.28v 3190 |
. . . . . . . . 9
⊢
((∀𝑤 ∈
𝐵 (𝜒 → 𝑦 = 𝑤) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → ∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) |
| 38 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ ∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) → 𝜑) |
| 39 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑣∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) |
| 40 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑣𝐵 |
| 41 | | nfs1v 2156 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑣[𝑎 / 𝑣][𝑢 / 𝑦]𝜏 |
| 42 | | nfs1v 2156 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑣[𝑎 / 𝑣][𝑢 / 𝑦]𝜃 |
| 43 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑣 𝑢 = 𝑤 |
| 44 | 42, 43 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑣([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) |
| 45 | 40, 44 | nfralw 3311 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑣∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) |
| 46 | 41, 45 | nfan 1899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑣([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) |
| 47 | 40, 46 | nfrexw 3313 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑣∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) |
| 48 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑣 𝑥 = 𝑎 |
| 49 | 47, 48 | nfim 1896 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑣(∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎) |
| 50 | 39, 49 | nfan 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑣(∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) |
| 51 | | sbequ12 2251 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑎 → ([𝑢 / 𝑦]𝜏 ↔ [𝑎 / 𝑣][𝑢 / 𝑦]𝜏)) |
| 52 | | sbequ12 2251 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑎 → ([𝑢 / 𝑦]𝜃 ↔ [𝑎 / 𝑣][𝑢 / 𝑦]𝜃)) |
| 53 | 52 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑎 → (([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) ↔ ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤))) |
| 54 | 53 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑎 → (∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤))) |
| 55 | 51, 54 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑎 → (([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) ↔ ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)))) |
| 56 | 55 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑎 → (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) ↔ ∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)))) |
| 57 | | equequ2 2025 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑎 → (𝑥 = 𝑣 ↔ 𝑥 = 𝑎)) |
| 58 | 56, 57 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑎 → ((∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣) ↔ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎))) |
| 59 | 58 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑎 → ((∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) ↔ (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)))) |
| 60 | 50, 59 | rspc 3610 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)))) |
| 61 | 60 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)))) |
| 62 | | nfs1v 2156 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑤[𝑏 / 𝑤]𝜒 |
| 63 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑤 𝑦 = 𝑏 |
| 64 | 62, 63 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑤([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏) |
| 65 | | sbequ12 2251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑏 → (𝜒 ↔ [𝑏 / 𝑤]𝜒)) |
| 66 | | equequ2 2025 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑏 → (𝑦 = 𝑤 ↔ 𝑦 = 𝑏)) |
| 67 | 65, 66 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑏 → ((𝜒 → 𝑦 = 𝑤) ↔ ([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏))) |
| 68 | 64, 67 | rspc 3610 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → ([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏))) |
| 69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → ([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏))) |
| 70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → ([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏))) |
| 71 | 70 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) → ([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏)) |
| 72 | 1 | sbievw 2093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ([𝑤 / 𝑦]𝜑 ↔ 𝜒) |
| 73 | 72 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 ↔ [𝑤 / 𝑦]𝜑) |
| 74 | 73 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . 19
⊢ ([𝑏 / 𝑤]𝜒 ↔ [𝑏 / 𝑤][𝑤 / 𝑦]𝜑) |
| 75 | | sbco2vv 2099 |
. . . . . . . . . . . . . . . . . . 19
⊢ ([𝑏 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑) |
| 76 | 74, 75 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ([𝑏 / 𝑤]𝜒 ↔ [𝑏 / 𝑦]𝜑) |
| 77 | 76 | imbi1i 349 |
. . . . . . . . . . . . . . . . 17
⊢ (([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏) ↔ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) |
| 78 | | 2reu8i.b |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑏 → (𝜑 ↔ 𝜂)) |
| 79 | 78 | sbievw 2093 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑏 / 𝑦]𝜑 ↔ 𝜂) |
| 80 | | pm3.35 803 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (([𝑏 / 𝑦]𝜑 ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → 𝑦 = 𝑏) |
| 81 | 80 | equcomd 2018 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (([𝑏 / 𝑦]𝜑 ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → 𝑏 = 𝑦) |
| 82 | 81 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ([𝑏 / 𝑦]𝜑 → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → 𝑏 = 𝑦)) |
| 83 | 79, 82 | sylbir 235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜂 → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → 𝑏 = 𝑦)) |
| 84 | 83 | com12 32 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → (𝜂 → 𝑏 = 𝑦)) |
| 85 | 84 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) → (𝜂 → 𝑏 = 𝑦)) |
| 86 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) → 𝑏 ∈ 𝐵) |
| 87 | 86 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → 𝑏 ∈ 𝐵) |
| 88 | | sbequ 2083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 = 𝑏 → ([𝑢 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) |
| 89 | 88 | sbbidv 2079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑢 = 𝑏 → ([𝑎 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜑)) |
| 90 | | equequ1 2024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 = 𝑏 → (𝑢 = 𝑤 ↔ 𝑏 = 𝑤)) |
| 91 | 90 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 = 𝑏 → (([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤) ↔ ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))) |
| 92 | 91 | ralbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑢 = 𝑏 → (∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))) |
| 93 | 89, 92 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 = 𝑏 → (([𝑎 / 𝑥][𝑢 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤)) ↔ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤)))) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) ∧ 𝑢 = 𝑏) → (([𝑎 / 𝑥][𝑢 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤)) ↔ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤)))) |
| 95 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑎 ∈ V |
| 96 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑏 ∈ V |
| 97 | | 2reu8i.2 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜑 ↔ 𝜓)) |
| 98 | 95, 96, 97 | sbc2ie 3866 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜓) |
| 99 | 98 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ 𝜓)) |
| 100 | 99 | biimprd 248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → (𝜓 → [𝑎 / 𝑥][𝑏 / 𝑦]𝜑)) |
| 101 | 100 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → ((𝜂 ∧ 𝜓) → [𝑎 / 𝑥][𝑏 / 𝑦]𝜑)) |
| 102 | 101 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → [𝑎 / 𝑥][𝑏 / 𝑦]𝜑) |
| 103 | | sbsbc 3792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ([𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑) |
| 104 | 103 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜑) |
| 105 | | sbsbc 3792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜑) |
| 106 | 104, 105 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑎 / 𝑥][𝑏 / 𝑦]𝜑) |
| 107 | 102, 106 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → [𝑎 / 𝑥][𝑏 / 𝑦]𝜑) |
| 108 | 72 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑎 / 𝑥]𝜒) |
| 109 | | 2reu8i.a |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑥 = 𝑎 → (𝜒 ↔ 𝜁)) |
| 110 | 109 | sbievw 2093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ([𝑎 / 𝑥]𝜒 ↔ 𝜁) |
| 111 | 108, 110 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜁) |
| 112 | | 2reu8i.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜒 → 𝑦 = 𝑤) ∧ 𝜁) → 𝑦 = 𝑤) |
| 113 | 112 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜒 → 𝑦 = 𝑤) → (𝜁 → 𝑦 = 𝑤)) |
| 114 | 113 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ 𝑤 ∈ 𝐵) ∧ (𝜒 → 𝑦 = 𝑤)) → (𝜁 → 𝑦 = 𝑤)) |
| 115 | 79 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) ↔ (𝜂 → 𝑦 = 𝑏)) |
| 116 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝜂 → ((𝜂 → 𝑦 = 𝑏) → 𝑦 = 𝑏)) |
| 117 | 116 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) → ((𝜂 → 𝑦 = 𝑏) → 𝑦 = 𝑏)) |
| 118 | 115, 117 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → 𝑦 = 𝑏)) |
| 119 | | ax7 2015 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑏 → (𝑦 = 𝑤 → 𝑏 = 𝑤)) |
| 120 | 118, 119 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → (𝑦 = 𝑤 → 𝑏 = 𝑤))) |
| 121 | 120 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → (𝑦 = 𝑤 → 𝑏 = 𝑤)) |
| 122 | 121 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ 𝑤 ∈ 𝐵) ∧ (𝜒 → 𝑦 = 𝑤)) → (𝑦 = 𝑤 → 𝑏 = 𝑤)) |
| 123 | 114, 122 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ 𝑤 ∈ 𝐵) ∧ (𝜒 → 𝑦 = 𝑤)) → (𝜁 → 𝑏 = 𝑤)) |
| 124 | 111, 123 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ 𝑤 ∈ 𝐵) ∧ (𝜒 → 𝑦 = 𝑤)) → ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤)) |
| 125 | 124 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ 𝑤 ∈ 𝐵) → ((𝜒 → 𝑦 = 𝑤) → ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))) |
| 126 | 125 | ralimdva 3167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝜂 ∧ 𝜓)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))) |
| 127 | 126 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝜂 ∧ 𝜓) → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))))) |
| 128 | 127 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → ((𝜂 ∧ 𝜓) → ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))))) |
| 129 | 128 | imp41 425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤)) |
| 130 | 107, 129 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → ([𝑎 / 𝑥][𝑏 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑏 = 𝑤))) |
| 131 | 87, 94, 130 | rspcedvd 3624 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → ∃𝑢 ∈ 𝐵 ([𝑎 / 𝑥][𝑢 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤))) |
| 132 | 4 | sbievw 2093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ([𝑣 / 𝑥]𝜑 ↔ 𝜏) |
| 133 | 132 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜏 ↔ [𝑣 / 𝑥]𝜑) |
| 134 | 133 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ([𝑢 / 𝑦]𝜏 ↔ [𝑢 / 𝑦][𝑣 / 𝑥]𝜑) |
| 135 | | sbcom2 2173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ([𝑢 / 𝑦][𝑣 / 𝑥]𝜑 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜑) |
| 136 | 134, 135 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ([𝑢 / 𝑦]𝜏 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜑) |
| 137 | 136 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ↔ [𝑎 / 𝑣][𝑣 / 𝑥][𝑢 / 𝑦]𝜑) |
| 138 | | sbco2vv 2099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ([𝑎 / 𝑣][𝑣 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜑) |
| 139 | 137, 138 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜑) |
| 140 | 5 | sbievw 2093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ([𝑣 / 𝑥]𝜒 ↔ 𝜃) |
| 141 | 140 | bicomi 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜃 ↔ [𝑣 / 𝑥]𝜒) |
| 142 | 141 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ([𝑢 / 𝑦]𝜃 ↔ [𝑢 / 𝑦][𝑣 / 𝑥]𝜒) |
| 143 | | sbcom2 2173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ([𝑢 / 𝑦][𝑣 / 𝑥]𝜒 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜒) |
| 144 | 142, 143 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ([𝑢 / 𝑦]𝜃 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜒) |
| 145 | 144 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 ↔ [𝑎 / 𝑣][𝑣 / 𝑥][𝑢 / 𝑦]𝜒) |
| 146 | | sbco2vv 2099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ([𝑎 / 𝑣][𝑣 / 𝑥][𝑢 / 𝑦]𝜒 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜒) |
| 147 | 73 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ([𝑢 / 𝑦]𝜒 ↔ [𝑢 / 𝑦][𝑤 / 𝑦]𝜑) |
| 148 | | nfs1v 2156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 |
| 149 | 148 | sbf 2271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ([𝑢 / 𝑦][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑) |
| 150 | 147, 149 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ([𝑢 / 𝑦]𝜒 ↔ [𝑤 / 𝑦]𝜑) |
| 151 | 150 | sbbii 2076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ([𝑎 / 𝑥][𝑢 / 𝑦]𝜒 ↔ [𝑎 / 𝑥][𝑤 / 𝑦]𝜑) |
| 152 | 145, 146,
151 | 3bitri 297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 ↔ [𝑎 / 𝑥][𝑤 / 𝑦]𝜑) |
| 153 | 152 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) ↔ ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤)) |
| 154 | 153 | ralbii 3093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∀𝑤 ∈
𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤) ↔ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤)) |
| 155 | 139, 154 | anbi12i 628 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) ↔ ([𝑎 / 𝑥][𝑢 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤))) |
| 156 | 155 | rexbii 3094 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑢 ∈
𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) ↔ ∃𝑢 ∈ 𝐵 ([𝑎 / 𝑥][𝑢 / 𝑦]𝜑 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑥][𝑤 / 𝑦]𝜑 → 𝑢 = 𝑤))) |
| 157 | 131, 156 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → ∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤))) |
| 158 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑢 ∈
𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → ((∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎) → 𝑥 = 𝑎)) |
| 159 | 157, 158 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (𝜂 ∧ 𝜓)) → ((∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎) → 𝑥 = 𝑎)) |
| 160 | 159 | impancom 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) → ((𝜂 ∧ 𝜓) → 𝑥 = 𝑎)) |
| 161 | 160 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) ∧ (𝜂 ∧ 𝜓)) → 𝑥 = 𝑎) |
| 162 | 161 | equcomd 2018 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) ∧ (𝜂 ∧ 𝜓)) → 𝑎 = 𝑥) |
| 163 | 162 | exp32 420 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) → (𝜂 → (𝜓 → 𝑎 = 𝑥))) |
| 164 | 85, 163 | jcad 512 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑥 ∈
𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏)) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))) |
| 165 | 164 | exp31 419 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) → (([𝑏 / 𝑦]𝜑 → 𝑦 = 𝑏) → ((∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 166 | 77, 165 | biimtrid 242 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) → (([𝑏 / 𝑤]𝜒 → 𝑦 = 𝑏) → ((∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 167 | 71, 166 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) → ((∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |
| 168 | 167 | expimpd 453 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑎 / 𝑣][𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑎)) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |
| 169 | 61, 168 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |
| 170 | 169 | impancom 451 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ ∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |
| 171 | 170 | ralrimivv 3200 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ ∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))) |
| 172 | 38, 171 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ∧ ∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣))) → (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |
| 173 | 172 | ex 412 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (∀𝑣 ∈ 𝐴 (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 174 | 37, 173 | syl5 34 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → ((∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 175 | 174 | expd 415 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) → (∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤) → (∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣) → (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))))) |
| 176 | 175 | expimpd 453 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) → (∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣) → (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))))) |
| 177 | 176 | impd 410 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (((𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 178 | 177 | reximdva 3168 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 ((𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑢 ∈ 𝐵 ([𝑢 / 𝑦]𝜏 ∧ ∀𝑤 ∈ 𝐵 ([𝑢 / 𝑦]𝜃 → 𝑢 = 𝑤)) → 𝑥 = 𝑣)) → ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 179 | 36, 178 | biimtrid 242 |
. . 3
⊢ (𝑥 ∈ 𝐴 → ((∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣)) → ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥)))))) |
| 180 | 179 | reximia 3081 |
. 2
⊢
(∃𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑤 ∈ 𝐵 (𝜒 → 𝑦 = 𝑤)) ∧ ∀𝑣 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜏 ∧ ∀𝑤 ∈ 𝐵 (𝜃 → 𝑦 = 𝑤)) → 𝑥 = 𝑣)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |
| 181 | 11, 180 | sylbi 217 |
1
⊢
(∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) |