Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcalfi | Structured version Visualization version GIF version |
Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
sbcalfi.1 | ⊢ Ⅎ𝑦𝐴 |
sbcalfi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcalfi | ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcalfi.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | sbcalf 36199 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
3 | sbcalfi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
4 | 3 | albii 1823 | . 2 ⊢ (∀𝑦[𝐴 / 𝑥]𝜑 ↔ ∀𝑦𝜓) |
5 | 2, 4 | bitri 274 | 1 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 Ⅎwnfc 2886 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |