Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcalfi | Structured version Visualization version GIF version |
Description: Move universal quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
sbcalfi.1 | ⊢ Ⅎ𝑦𝐴 |
sbcalfi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcalfi | ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcalfi.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | sbcalf 35858 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
3 | sbcalfi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
4 | 3 | albii 1821 | . 2 ⊢ (∀𝑦[𝐴 / 𝑥]𝜑 ↔ ∀𝑦𝜓) |
5 | 2, 4 | bitri 278 | 1 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∀wal 1536 Ⅎwnfc 2899 [wsbc 3698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-v 3411 df-sbc 3699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |