| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcalfi | Structured version Visualization version GIF version | ||
| Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| sbcalfi.1 | ⊢ Ⅎ𝑦𝐴 |
| sbcalfi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcalfi | ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcalfi.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | sbcalf 38160 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
| 3 | sbcalfi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | |
| 4 | 3 | albii 1820 | . 2 ⊢ (∀𝑦[𝐴 / 𝑥]𝜑 ↔ ∀𝑦𝜓) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 Ⅎwnfc 2879 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |