Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcalfi Structured version   Visualization version   GIF version

Theorem sbcalfi 35860
 Description: Move universal quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
sbcalfi.1 𝑦𝐴
sbcalfi.2 ([𝐴 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbcalfi ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcalfi
StepHypRef Expression
1 sbcalfi.1 . . 3 𝑦𝐴
21sbcalf 35858 . 2 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
3 sbcalfi.2 . . 3 ([𝐴 / 𝑥]𝜑𝜓)
43albii 1821 . 2 (∀𝑦[𝐴 / 𝑥]𝜑 ↔ ∀𝑦𝜓)
52, 4bitri 278 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  ∀wal 1536  Ⅎwnfc 2899  [wsbc 3698 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-v 3411  df-sbc 3699 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator