Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcalfi Structured version   Visualization version   GIF version

Theorem sbcalfi 38078
Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypotheses
Ref Expression
sbcalfi.1 𝑦𝐴
sbcalfi.2 ([𝐴 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbcalfi ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcalfi
StepHypRef Expression
1 sbcalfi.1 . . 3 𝑦𝐴
21sbcalf 38076 . 2 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
3 sbcalfi.2 . . 3 ([𝐴 / 𝑥]𝜑𝜓)
43albii 1817 . 2 (∀𝑦[𝐴 / 𝑥]𝜑 ↔ ∀𝑦𝜓)
52, 4bitri 275 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  wnfc 2893  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-sbc 3805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator