Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcexf Structured version   Visualization version   GIF version

Theorem sbcexf 35280
Description: Move existential quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.)
Hypothesis
Ref Expression
sbcexf.1 𝑦𝐴
Assertion
Ref Expression
sbcexf ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcexf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1908 . . . 4 𝑧𝜑
21sb8e 2558 . . 3 (∃𝑦𝜑 ↔ ∃𝑧[𝑧 / 𝑦]𝜑)
32sbcbii 3833 . 2 ([𝐴 / 𝑥]𝑦𝜑[𝐴 / 𝑥]𝑧[𝑧 / 𝑦]𝜑)
4 sbcex2 3838 . 2 ([𝐴 / 𝑥]𝑧[𝑧 / 𝑦]𝜑 ↔ ∃𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
5 sbcexf.1 . . . 4 𝑦𝐴
6 nfs1v 2267 . . . 4 𝑦[𝑧 / 𝑦]𝜑
75, 6nfsbc 3801 . . 3 𝑦[𝐴 / 𝑥][𝑧 / 𝑦]𝜑
8 nfv 1908 . . 3 𝑧[𝐴 / 𝑥]𝜑
9 sbequ12r 2247 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑𝜑))
109sbcbidv 3831 . . 3 (𝑧 = 𝑦 → ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥]𝜑))
117, 8, 10cbvexv1 2356 . 2 (∃𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
123, 4, 113bitri 298 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wex 1773  [wsb 2062  wnfc 2966  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-sbc 3777
This theorem is referenced by:  sbcexfi  35282
  Copyright terms: Public domain W3C validator