![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc19.21g | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
Ref | Expression |
---|---|
sbcgf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbc19.21g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcimg 3856 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | |
2 | sbcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbcgf 3881 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
4 | 3 | imbi1d 341 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
5 | 1, 4 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: bnj121 34846 bnj124 34847 bnj130 34850 bnj207 34857 bnj611 34894 bnj1000 34917 |
Copyright terms: Public domain | W3C validator |