MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc19.21g Structured version   Visualization version   GIF version

Theorem sbc19.21g 3850
Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
Hypothesis
Ref Expression
sbcgf.1 𝑥𝜑
Assertion
Ref Expression
sbc19.21g (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbc19.21g
StepHypRef Expression
1 sbcimg 3823 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
2 sbcgf.1 . . . 4 𝑥𝜑
32sbcgf 3849 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
43imbi1d 341 . 2 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
51, 4bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1777  wcel 2098  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-sbc 3773
This theorem is referenced by:  bnj121  34410  bnj124  34411  bnj130  34414  bnj207  34421  bnj611  34458  bnj1000  34481
  Copyright terms: Public domain W3C validator