MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc19.21g Structured version   Visualization version   GIF version

Theorem sbc19.21g 3856
Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
Hypothesis
Ref Expression
sbcgf.1 𝑥𝜑
Assertion
Ref Expression
sbc19.21g (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbc19.21g
StepHypRef Expression
1 sbcimg 3829 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
2 sbcgf.1 . . . 4 𝑥𝜑
32sbcgf 3855 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
43imbi1d 342 . 2 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
51, 4bitrd 279 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  wcel 2107  [wsbc 3778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-sbc 3779
This theorem is referenced by:  bnj121  33881  bnj124  33882  bnj130  33885  bnj207  33892  bnj611  33929  bnj1000  33952
  Copyright terms: Public domain W3C validator