Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbc19.21g | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
Ref | Expression |
---|---|
sbcgf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbc19.21g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcimg 3770 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | |
2 | sbcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbcgf 3797 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
4 | 3 | imbi1d 341 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
5 | 1, 4 | bitrd 278 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1789 ∈ wcel 2109 [wsbc 3719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-sbc 3720 |
This theorem is referenced by: bnj121 32829 bnj124 32830 bnj130 32833 bnj207 32840 bnj611 32877 bnj1000 32900 |
Copyright terms: Public domain | W3C validator |