MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbctt Structured version   Visualization version   GIF version

Theorem sbctt 3792
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbctt ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbctt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3719 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21bibi1d 344 . . . 4 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑𝜑) ↔ ([𝐴 / 𝑥]𝜑𝜑)))
32imbi2d 341 . . 3 (𝑦 = 𝐴 → ((Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑)) ↔ (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑𝜑))))
4 sbft 2262 . . 3 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
53, 4vtoclg 3505 . 2 (𝐴𝑉 → (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑𝜑)))
65imp 407 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  [wsb 2067  wcel 2106  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  sbcgf  3793  csbtt  3849
  Copyright terms: Public domain W3C validator