![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbctt | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
sbctt | ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3780 | . . . . 5 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | bibi1d 343 | . . . 4 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ↔ 𝜑) ↔ ([𝐴 / 𝑥]𝜑 ↔ 𝜑))) |
3 | 2 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐴 → ((Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) ↔ (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)))) |
4 | sbft 2260 | . . 3 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
5 | 3, 4 | vtoclg 3542 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ⅎ𝑥𝜑 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑))) |
6 | 5 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 Ⅎwnf 1784 [wsb 2066 ∈ wcel 2105 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-sbc 3778 |
This theorem is referenced by: sbcgf 3854 csbtt 3910 |
Copyright terms: Public domain | W3C validator |