| Step | Hyp | Ref
| Expression |
| 1 | | elex 3500 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 2 | | sbcex2 3849 |
. . . 4
⊢
([𝐴 / 𝑥]∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑤[𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵)) |
| 3 | | sbcan 3837 |
. . . . . 6
⊢
([𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ∧ [𝐴 / 𝑥]𝑤 ∈ 𝐵)) |
| 4 | | sbcal 3848 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑)) |
| 5 | | sbcbig 3839 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
| 6 | | sbcg 3862 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
| 7 | 6 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
| 8 | 5, 7 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑) ↔ (𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
| 9 | 8 | albidv 1919 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
| 10 | 4, 9 | bitrid 283 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
| 11 | | eqabb 2880 |
. . . . . . . . 9
⊢ (𝑤 = {𝑦 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑)) |
| 12 | 11 | sbcbii 3845 |
. . . . . . . 8
⊢
([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑)) |
| 13 | | eqabb 2880 |
. . . . . . . 8
⊢ (𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑)) |
| 14 | 10, 12, 13 | 3bitr4g 314 |
. . . . . . 7
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ↔ 𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
| 15 | | sbcabel.1 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐵 |
| 16 | 15 | nfcri 2896 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑤 ∈ 𝐵 |
| 17 | 16 | sbcgf 3860 |
. . . . . . 7
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
| 18 | 14, 17 | anbi12d 632 |
. . . . . 6
⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ∧ [𝐴 / 𝑥]𝑤 ∈ 𝐵) ↔ (𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
| 19 | 3, 18 | bitrid 283 |
. . . . 5
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ (𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
| 20 | 19 | exbidv 1920 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑤[𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑤(𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
| 21 | 2, 20 | bitrid 283 |
. . 3
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑤(𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
| 22 | | dfclel 2816 |
. . . 4
⊢ ({𝑦 ∣ 𝜑} ∈ 𝐵 ↔ ∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵)) |
| 23 | 22 | sbcbii 3845 |
. . 3
⊢
([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵)) |
| 24 | | dfclel 2816 |
. . 3
⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵 ↔ ∃𝑤(𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵)) |
| 25 | 21, 23, 24 | 3bitr4g 314 |
. 2
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) |
| 26 | 1, 25 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) |