Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
2 | | sbcex2 3777 |
. . . 4
⊢
([𝐴 / 𝑥]∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑤[𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵)) |
3 | | sbcan 3763 |
. . . . . 6
⊢
([𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ∧ [𝐴 / 𝑥]𝑤 ∈ 𝐵)) |
4 | | sbcal 3776 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑)) |
5 | | sbcbig 3765 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
6 | | sbcg 3791 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
7 | 6 | bibi1d 343 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
8 | 5, 7 | bitrd 278 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑) ↔ (𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
9 | 8 | albidv 1924 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
10 | 4, 9 | syl5bb 282 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑))) |
11 | | abeq2 2871 |
. . . . . . . . 9
⊢ (𝑤 = {𝑦 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑)) |
12 | 11 | sbcbii 3772 |
. . . . . . . 8
⊢
([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝑤 ↔ 𝜑)) |
13 | | abeq2 2871 |
. . . . . . . 8
⊢ (𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ ∀𝑦(𝑦 ∈ 𝑤 ↔ [𝐴 / 𝑥]𝜑)) |
14 | 10, 12, 13 | 3bitr4g 313 |
. . . . . . 7
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ↔ 𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
15 | | sbcabel.1 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐵 |
16 | 15 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑤 ∈ 𝐵 |
17 | 16 | sbcgf 3789 |
. . . . . . 7
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
18 | 14, 17 | anbi12d 630 |
. . . . . 6
⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝑤 = {𝑦 ∣ 𝜑} ∧ [𝐴 / 𝑥]𝑤 ∈ 𝐵) ↔ (𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
19 | 3, 18 | syl5bb 282 |
. . . . 5
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ (𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
20 | 19 | exbidv 1925 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑤[𝐴 / 𝑥](𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑤(𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
21 | 2, 20 | syl5bb 282 |
. . 3
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑤(𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵))) |
22 | | dfclel 2818 |
. . . 4
⊢ ({𝑦 ∣ 𝜑} ∈ 𝐵 ↔ ∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵)) |
23 | 22 | sbcbii 3772 |
. . 3
⊢
([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤(𝑤 = {𝑦 ∣ 𝜑} ∧ 𝑤 ∈ 𝐵)) |
24 | | dfclel 2818 |
. . 3
⊢ ({𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵 ↔ ∃𝑤(𝑤 = {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∧ 𝑤 ∈ 𝐵)) |
25 | 21, 23, 24 | 3bitr4g 313 |
. 2
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) |
26 | 1, 25 | syl 17 |
1
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) |