MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimg Structured version   Visualization version   GIF version

Theorem sbcimg 3802
Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcimg (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcimg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3756 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
2 dfsbcq2 3756 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3 dfsbcq2 3756 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
42, 3imbi12d 344 . 2 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
5 sbim 2303 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
61, 4, 5vtoclbg 3523 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsb 2065  wcel 2109  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754
This theorem is referenced by:  sbc19.21g  3825  sbcssg  4483  iota4an  6493  sbcfung  6540  riotass2  7374  tfinds2  7840  telgsums  19923  bnj110  34848  bnj92  34852  bnj539  34881  bnj540  34882  f1omptsnlem  37324  mptsnunlem  37326  topdifinffinlem  37335  relowlpssretop  37352  rdgeqoa  37358  sbcimi  38104  cdlemkid3N  40927  cdlemkid4  40928  cdlemk35s  40931  cdlemk39s  40933  cdlemk42  40935  frege77  43929  frege116  43968  frege118  43970  sbcim2g  44528  onfrALTlem5  44532  sbcim2gVD  44864  sbcssgVD  44872  onfrALTlem5VD  44874  iccelpart  47434
  Copyright terms: Public domain W3C validator