MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimg Structured version   Visualization version   GIF version

Theorem sbcimg 3827
Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcimg (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcimg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3779 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
2 dfsbcq2 3779 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3 dfsbcq2 3779 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
42, 3imbi12d 344 . 2 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
5 sbim 2299 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
61, 4, 5vtoclbg 3559 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  [wsb 2067  wcel 2106  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-sbc 3777
This theorem is referenced by:  sbcim1OLD  3833  sbceqalOLD  3843  sbc19.21g  3854  sbcssg  4522  iota4an  6522  sbcfung  6569  riotass2  7392  tfinds2  7849  telgsums  19855  bnj110  33857  bnj92  33861  bnj539  33890  bnj540  33891  f1omptsnlem  36205  mptsnunlem  36207  topdifinffinlem  36216  relowlpssretop  36233  rdgeqoa  36239  sbcimi  36966  cdlemkid3N  39792  cdlemkid4  39793  cdlemk35s  39796  cdlemk39s  39798  cdlemk42  39800  frege77  42676  frege116  42715  frege118  42717  sbcim2g  43284  onfrALTlem5  43288  sbcim2gVD  43621  sbcssgVD  43629  onfrALTlem5VD  43631  iccelpart  46087
  Copyright terms: Public domain W3C validator