| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcimg | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| sbcimg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3745 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ [𝐴 / 𝑥](𝜑 → 𝜓))) | |
| 2 | dfsbcq2 3745 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | dfsbcq2 3745 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| 5 | sbim 2303 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 6 | 1, 4, 5 | vtoclbg 3512 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3743 |
| This theorem is referenced by: sbc19.21g 3814 sbcssg 4471 iota4an 6464 sbcfung 6506 riotass2 7336 tfinds2 7797 telgsums 19872 bnj110 34831 bnj92 34835 bnj539 34864 bnj540 34865 f1omptsnlem 37320 mptsnunlem 37322 topdifinffinlem 37331 relowlpssretop 37348 rdgeqoa 37354 sbcimi 38100 cdlemkid3N 40922 cdlemkid4 40923 cdlemk35s 40926 cdlemk39s 40928 cdlemk42 40930 frege77 43923 frege116 43962 frege118 43964 sbcim2g 44522 onfrALTlem5 44526 sbcim2gVD 44858 sbcssgVD 44866 onfrALTlem5VD 44868 iccelpart 47427 |
| Copyright terms: Public domain | W3C validator |