| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcimg | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| sbcimg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3759 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ [𝐴 / 𝑥](𝜑 → 𝜓))) | |
| 2 | dfsbcq2 3759 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | dfsbcq2 3759 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| 5 | sbim 2303 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 6 | 1, 4, 5 | vtoclbg 3526 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: sbc19.21g 3828 sbcssg 4486 iota4an 6496 sbcfung 6543 riotass2 7377 tfinds2 7843 telgsums 19930 bnj110 34855 bnj92 34859 bnj539 34888 bnj540 34889 f1omptsnlem 37331 mptsnunlem 37333 topdifinffinlem 37342 relowlpssretop 37359 rdgeqoa 37365 sbcimi 38111 cdlemkid3N 40934 cdlemkid4 40935 cdlemk35s 40938 cdlemk39s 40940 cdlemk42 40942 frege77 43936 frege116 43975 frege118 43977 sbcim2g 44535 onfrALTlem5 44539 sbcim2gVD 44871 sbcssgVD 44879 onfrALTlem5VD 44881 iccelpart 47438 |
| Copyright terms: Public domain | W3C validator |