Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimg Structured version   Visualization version   GIF version

Theorem sbcimg 3824
 Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcimg (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcimg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3779 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
2 dfsbcq2 3779 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3 dfsbcq2 3779 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
42, 3imbi12d 346 . 2 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
5 sbim 2305 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
61, 4, 5vtoclbg 3574 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   = wceq 1530  [wsb 2062   ∈ wcel 2107  [wsbc 3776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-sbc 3777 This theorem is referenced by:  sbcim1  3829  sbceqal  3839  sbc19.21g  3850  sbcssg  4466  iota4an  6336  sbcfung  6378  riotass2  7138  tfinds2  7571  telgsums  19049  bnj110  32035  bnj92  32039  bnj539  32068  bnj540  32069  f1omptsnlem  34505  mptsnunlem  34507  topdifinffinlem  34516  relowlpssretop  34533  rdgeqoa  34539  sbcimi  35275  cdlemkid3N  37955  cdlemkid4  37956  cdlemk35s  37959  cdlemk39s  37961  cdlemk42  37963  frege77  40170  frege116  40209  frege118  40211  sbcim2g  40756  onfrALTlem5  40760  sbcim2gVD  41093  sbcssgVD  41101  onfrALTlem5VD  41103  iccelpart  43444
 Copyright terms: Public domain W3C validator