| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcimg | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| sbcimg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3753 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ [𝐴 / 𝑥](𝜑 → 𝜓))) | |
| 2 | dfsbcq2 3753 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | dfsbcq2 3753 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| 5 | sbim 2303 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 6 | 1, 4, 5 | vtoclbg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: sbc19.21g 3822 sbcssg 4479 iota4an 6481 sbcfung 6524 riotass2 7356 tfinds2 7820 telgsums 19907 bnj110 34841 bnj92 34845 bnj539 34874 bnj540 34875 f1omptsnlem 37317 mptsnunlem 37319 topdifinffinlem 37328 relowlpssretop 37345 rdgeqoa 37351 sbcimi 38097 cdlemkid3N 40920 cdlemkid4 40921 cdlemk35s 40924 cdlemk39s 40926 cdlemk42 40928 frege77 43922 frege116 43961 frege118 43963 sbcim2g 44521 onfrALTlem5 44525 sbcim2gVD 44857 sbcssgVD 44865 onfrALTlem5VD 44867 iccelpart 47427 |
| Copyright terms: Public domain | W3C validator |