| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcimg | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| sbcimg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3739 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ [𝐴 / 𝑥](𝜑 → 𝜓))) | |
| 2 | dfsbcq2 3739 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | dfsbcq2 3739 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| 5 | sbim 2305 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 6 | 1, 4, 5 | vtoclbg 3510 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2111 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: sbc19.21g 3808 sbcssg 4467 iota4an 6463 sbcfung 6505 riotass2 7333 tfinds2 7794 telgsums 19905 bnj110 34870 bnj92 34874 bnj539 34903 bnj540 34904 f1omptsnlem 37380 mptsnunlem 37382 topdifinffinlem 37391 relowlpssretop 37408 rdgeqoa 37414 sbcimi 38160 cdlemkid3N 41042 cdlemkid4 41043 cdlemk35s 41046 cdlemk39s 41048 cdlemk42 41050 frege77 44043 frege116 44082 frege118 44084 sbcim2g 44641 onfrALTlem5 44645 sbcim2gVD 44977 sbcssgVD 44985 onfrALTlem5VD 44987 iccelpart 47543 |
| Copyright terms: Public domain | W3C validator |