| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcng | Structured version Visualization version GIF version | ||
| Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| sbcng | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3744 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) | |
| 2 | dfsbcq2 3744 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
| 4 | sbn 2282 | . 2 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 5 | 1, 3, 4 | vtoclbg 3512 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2111 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: sbcn1 3794 sbcrext 3824 sbcnel12g 4364 sbcne12 4365 bnj23 34728 bnj110 34868 bnj1204 35022 sbcni 38157 rspcsbnea 42170 frege124d 43800 onfrALTlem5 44581 onfrALTlem5VD 44923 |
| Copyright terms: Public domain | W3C validator |