MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcng Structured version   Visualization version   GIF version

Theorem sbcng 3766
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcng (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))

Proof of Theorem sbcng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3719 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑[𝐴 / 𝑥] ¬ 𝜑))
2 dfsbcq2 3719 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32notbid 318 . 2 (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
4 sbn 2277 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
51, 3, 4vtoclbg 3507 1 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  [wsb 2067  wcel 2106  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  sbcn1  3771  sbcrext  3806  sbcnel12g  4345  sbcne12  4346  difopab  5740  bnj23  32697  bnj110  32838  bnj1204  32992  sbcni  36269  frege124d  41369  onfrALTlem5  42162  onfrALTlem5VD  42505
  Copyright terms: Public domain W3C validator