![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcng | Structured version Visualization version GIF version |
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
sbcng | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3781 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) | |
2 | dfsbcq2 3781 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | notbid 318 | . 2 ⊢ (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
4 | sbn 2277 | . 2 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
5 | 1, 3, 4 | vtoclbg 3560 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 [wsb 2068 ∈ wcel 2107 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 |
This theorem is referenced by: sbcn1 3833 sbcrext 3868 sbcnel12g 4412 sbcne12 4413 difopabOLD 5832 bnj23 33729 bnj110 33869 bnj1204 34023 sbcni 36979 frege124d 42512 onfrALTlem5 43303 onfrALTlem5VD 43646 |
Copyright terms: Public domain | W3C validator |