| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcng | Structured version Visualization version GIF version | ||
| Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| sbcng | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3773 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) | |
| 2 | dfsbcq2 3773 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
| 4 | sbn 2281 | . 2 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 5 | 1, 3, 4 | vtoclbg 3541 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: sbcn1 3823 sbcrext 3853 sbcnel12g 4394 sbcne12 4395 difopabOLD 5815 bnj23 34754 bnj110 34894 bnj1204 35048 sbcni 38140 rspcsbnea 42149 frege124d 43752 onfrALTlem5 44534 onfrALTlem5VD 44876 |
| Copyright terms: Public domain | W3C validator |