|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcng | Structured version Visualization version GIF version | ||
| Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| sbcng | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsbcq2 3790 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ [𝐴 / 𝑥] ¬ 𝜑)) | |
| 2 | dfsbcq2 3790 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑦 = 𝐴 → (¬ [𝑦 / 𝑥]𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | 
| 4 | sbn 2279 | . 2 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 5 | 1, 3, 4 | vtoclbg 3556 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 [wsb 2063 ∈ wcel 2107 [wsbc 3787 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3788 | 
| This theorem is referenced by: sbcn1 3840 sbcrext 3872 sbcnel12g 4413 sbcne12 4414 difopabOLD 5840 bnj23 34733 bnj110 34873 bnj1204 35027 sbcni 38119 rspcsbnea 42133 frege124d 43779 onfrALTlem5 44567 onfrALTlem5VD 44910 | 
| Copyright terms: Public domain | W3C validator |