| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbied | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2506) Usage of this theorem is discouraged because it depends on ax-13 2376. See sbiedw 2316, sbiedvw 2095 for variants using disjoint variables, but requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Jun-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbied.1 | ⊢ Ⅎ𝑥𝜑 |
| sbied.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| sbied.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| sbied | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbied.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | sbrim 2304 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
| 3 | sbied.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 1, 3 | nfim1 2199 | . . . 4 ⊢ Ⅎ𝑥(𝜑 → 𝜒) |
| 5 | sbied.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 5 | com12 32 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
| 7 | 6 | pm5.74d 273 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 8 | 4, 7 | sbie 2506 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| 9 | 2, 8 | bitr3i 277 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → 𝜒)) |
| 10 | 9 | pm5.74ri 272 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbiedv 2508 sbco2 2515 wl-equsb3 37535 |
| Copyright terms: Public domain | W3C validator |