MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscatd2 Structured version   Visualization version   GIF version

Theorem iscatd2 17739
Description: Version of iscatd 17731 with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
iscatd2.b (𝜑𝐵 = (Base‘𝐶))
iscatd2.h (𝜑𝐻 = (Hom ‘𝐶))
iscatd2.o (𝜑· = (comp‘𝐶))
iscatd2.c (𝜑𝐶𝑉)
iscatd2.ps (𝜓 ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
iscatd2.1 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
iscatd2.2 ((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
iscatd2.3 ((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
iscatd2.4 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
iscatd2.5 ((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
Assertion
Ref Expression
iscatd2 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑤,𝑥,𝑧, 1   𝑦,𝑓,𝐵,𝑔,𝑘,𝑤,𝑥,𝑧   𝐶,𝑔,𝑘,𝑤,𝑦,𝑧   𝑓,𝐻,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧   · ,𝑓,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑓)   1 (𝑦)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,𝑘)

Proof of Theorem iscatd2
Dummy variables 𝑎 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscatd2.b . . 3 (𝜑𝐵 = (Base‘𝐶))
2 iscatd2.h . . 3 (𝜑𝐻 = (Hom ‘𝐶))
3 iscatd2.o . . 3 (𝜑· = (comp‘𝐶))
4 iscatd2.c . . 3 (𝜑𝐶𝑉)
5 iscatd2.1 . . 3 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
65ne0d 4365 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝐻𝑦) ≠ ∅)
763ad2antr1 1188 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → (𝑦𝐻𝑦) ≠ ∅)
8 n0 4376 . . . . 5 ((𝑦𝐻𝑦) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦𝐻𝑦))
97, 8sylib 218 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ∃𝑔 𝑔 ∈ (𝑦𝐻𝑦))
10 n0 4376 . . . . 5 ((𝑦𝐻𝑦) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦))
117, 10sylib 218 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦))
12 exdistrv 1955 . . . . 5 (∃𝑔𝑘(𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)) ↔ (∃𝑔 𝑔 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦)))
13 simpll 766 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝜑)
14 simplr2 1216 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑎𝐵)
15 simplr1 1215 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑦𝐵)
1614, 15jca 511 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → (𝑎𝐵𝑦𝐵))
17 simplr3 1217 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑟 ∈ (𝑎𝐻𝑦))
18 simprl 770 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑔 ∈ (𝑦𝐻𝑦))
19 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑘 ∈ (𝑦𝐻𝑦))
2017, 18, 193jca 1128 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))
21 iscatd2.ps . . . . . . . . . . . . . . 15 (𝜓 ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
22 simplll 774 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑥 = 𝑎)
2322eleq1d 2829 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑥𝐵𝑎𝐵))
2423anbi1d 630 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑎𝐵𝑦𝐵)))
25 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑧 = 𝑦)
2625eleq1d 2829 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑧𝐵𝑦𝐵))
27 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑤 = 𝑦)
2827eleq1d 2829 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑤𝐵𝑦𝐵))
2926, 28anbi12d 631 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ (𝑦𝐵𝑦𝐵)))
30 anidm 564 . . . . . . . . . . . . . . . . 17 ((𝑦𝐵𝑦𝐵) ↔ 𝑦𝐵)
3129, 30bitrdi 287 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ 𝑦𝐵))
32 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑓 = 𝑟)
3322oveq1d 7463 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑥𝐻𝑦) = (𝑎𝐻𝑦))
3432, 33eleq12d 2838 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑟 ∈ (𝑎𝐻𝑦)))
3525oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑦𝐻𝑧) = (𝑦𝐻𝑦))
3635eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦𝐻𝑦)))
3725, 27oveq12d 7466 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑧𝐻𝑤) = (𝑦𝐻𝑦))
3837eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ (𝑦𝐻𝑦)))
3934, 36, 383anbi123d 1436 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))))
4024, 31, 393anbi123d 1436 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))))
4121, 40bitrid 283 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝜓 ↔ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))))
4241anbi2d 629 . . . . . . . . . . . . 13 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))))))
4322opeq1d 4903 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑦⟩)
4443oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑦) = (⟨𝑎, 𝑦· 𝑦))
45 eqidd 2741 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 1 = 1 )
4644, 45, 32oveq123d 7469 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟))
4746, 32eqeq12d 2756 . . . . . . . . . . . . 13 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓 ↔ ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
4842, 47imbi12d 344 . . . . . . . . . . . 12 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
4948sbiedvw 2095 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) → ([𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
5049sbiedvw 2095 . . . . . . . . . 10 ((𝑥 = 𝑎𝑧 = 𝑦) → ([𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
5150sbiedvw 2095 . . . . . . . . 9 (𝑥 = 𝑎 → ([𝑦 / 𝑧][𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
52 iscatd2.2 . . . . . . . . . . . 12 ((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5352sbt 2066 . . . . . . . . . . 11 [𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5453sbt 2066 . . . . . . . . . 10 [𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5554sbt 2066 . . . . . . . . 9 [𝑦 / 𝑧][𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5651, 55chvarvv 1998 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)
5713, 16, 15, 20, 56syl13anc 1372 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)
5857ex 412 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ((𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
5958exlimdvv 1933 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → (∃𝑔𝑘(𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
6012, 59biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ((∃𝑔 𝑔 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦)) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
619, 11, 60mp2and 698 . . 3 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)
6263ad2antr1 1188 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (𝑦𝐻𝑦) ≠ ∅)
63 n0 4376 . . . . 5 ((𝑦𝐻𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑦𝐻𝑦))
6462, 63sylib 218 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ∃𝑓 𝑓 ∈ (𝑦𝐻𝑦))
65 id 22 . . . . . . . 8 (𝑦 = 𝑎𝑦 = 𝑎)
6665, 65oveq12d 7466 . . . . . . 7 (𝑦 = 𝑎 → (𝑦𝐻𝑦) = (𝑎𝐻𝑎))
6766neeq1d 3006 . . . . . 6 (𝑦 = 𝑎 → ((𝑦𝐻𝑦) ≠ ∅ ↔ (𝑎𝐻𝑎) ≠ ∅))
686ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑦𝐻𝑦) ≠ ∅)
6968adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ∀𝑦𝐵 (𝑦𝐻𝑦) ≠ ∅)
70 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → 𝑎𝐵)
7167, 69, 70rspcdva 3636 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (𝑎𝐻𝑎) ≠ ∅)
72 n0 4376 . . . . 5 ((𝑎𝐻𝑎) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎))
7371, 72sylib 218 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎))
74 exdistrv 1955 . . . . 5 (∃𝑓𝑘(𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎)) ↔ (∃𝑓 𝑓 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎)))
75 simpll 766 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝜑)
76 simplr1 1215 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑦𝐵)
77 simplr2 1216 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑎𝐵)
78 simprl 770 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑓 ∈ (𝑦𝐻𝑦))
79 simplr3 1217 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑟 ∈ (𝑦𝐻𝑎))
80 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑘 ∈ (𝑎𝐻𝑎))
8178, 79, 803jca 1128 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))
82 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑥 = 𝑦)
8382eleq1d 2829 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑥𝐵𝑦𝐵))
8483anbi1d 630 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑦𝐵𝑦𝐵)))
8584, 30bitrdi 287 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ 𝑦𝐵))
86 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑧 = 𝑎)
8786eleq1d 2829 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑧𝐵𝑎𝐵))
88 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑤 = 𝑎)
8988eleq1d 2829 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑤𝐵𝑎𝐵))
9087, 89anbi12d 631 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ (𝑎𝐵𝑎𝐵)))
91 anidm 564 . . . . . . . . . . . . . . . . 17 ((𝑎𝐵𝑎𝐵) ↔ 𝑎𝐵)
9290, 91bitrdi 287 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ 𝑎𝐵))
9382oveq1d 7463 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑥𝐻𝑦) = (𝑦𝐻𝑦))
9493eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑦𝐻𝑦)))
95 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑔 = 𝑟)
9686oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑦𝐻𝑧) = (𝑦𝐻𝑎))
9795, 96eleq12d 2838 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑟 ∈ (𝑦𝐻𝑎)))
9886, 88oveq12d 7466 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑧𝐻𝑤) = (𝑎𝐻𝑎))
9998eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ (𝑎𝐻𝑎)))
10094, 97, 993anbi123d 1436 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎))))
10185, 92, 1003anbi123d 1436 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))))
10221, 101bitrid 283 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝜓 ↔ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))))
103102anbi2d 629 . . . . . . . . . . . . 13 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎))))))
10486oveq2d 7464 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (⟨𝑦, 𝑦· 𝑧) = (⟨𝑦, 𝑦· 𝑎))
105 eqidd 2741 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 1 = 1 )
106104, 95, 105oveq123d 7469 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ))
107106, 95eqeq12d 2756 . . . . . . . . . . . . 13 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔 ↔ (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
108103, 107imbi12d 344 . . . . . . . . . . . 12 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
109108sbiedvw 2095 . . . . . . . . . . 11 (((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) → ([𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
110109sbiedvw 2095 . . . . . . . . . 10 ((𝑥 = 𝑦𝑧 = 𝑎) → ([𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
111110sbiedvw 2095 . . . . . . . . 9 (𝑥 = 𝑦 → ([𝑎 / 𝑧][𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
112 iscatd2.3 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
113112sbt 2066 . . . . . . . . . . 11 [𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
114113sbt 2066 . . . . . . . . . 10 [𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
115114sbt 2066 . . . . . . . . 9 [𝑎 / 𝑧][𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
116111, 115chvarvv 1998 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)
11775, 76, 77, 81, 116syl13anc 1372 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)
118117ex 412 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ((𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎)) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
119118exlimdvv 1933 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (∃𝑓𝑘(𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎)) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
12074, 119biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ((∃𝑓 𝑓 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎)) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
12164, 73, 120mp2and 698 . . 3 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)
122 id 22 . . . . . . . 8 (𝑦 = 𝑧𝑦 = 𝑧)
123122, 122oveq12d 7466 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐻𝑦) = (𝑧𝐻𝑧))
124123neeq1d 3006 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑧) ≠ ∅))
125683ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → ∀𝑦𝐵 (𝑦𝐻𝑦) ≠ ∅)
126 simp23 1208 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → 𝑧𝐵)
127124, 125, 126rspcdva 3636 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (𝑧𝐻𝑧) ≠ ∅)
128 n0 4376 . . . . 5 ((𝑧𝐻𝑧) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑧𝐻𝑧))
129127, 128sylib 218 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → ∃𝑘 𝑘 ∈ (𝑧𝐻𝑧))
130 eleq1w 2827 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1311303anbi1d 1440 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐵𝑎𝐵𝑧𝐵) ↔ (𝑦𝐵𝑎𝐵𝑧𝐵)))
132 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐻𝑎) = (𝑦𝐻𝑎))
133132eleq2d 2830 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑟 ∈ (𝑥𝐻𝑎) ↔ 𝑟 ∈ (𝑦𝐻𝑎)))
134133anbi1d 630 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ↔ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))))
135134anbi1d 630 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)) ↔ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))
136131, 135anbi12d 631 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))) ↔ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))))
137136anbi2d 629 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) ↔ (𝜑 ∧ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))))
138 opeq1 4897 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ⟨𝑥, 𝑎⟩ = ⟨𝑦, 𝑎⟩)
139138oveq1d 7463 . . . . . . . . . . 11 (𝑥 = 𝑦 → (⟨𝑥, 𝑎· 𝑧) = (⟨𝑦, 𝑎· 𝑧))
140139oveqd 7465 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) = (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟))
141 oveq1 7455 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐻𝑧) = (𝑦𝐻𝑧))
142140, 141eleq12d 2838 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧) ↔ (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))
143137, 142imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧))))
144 df-3an 1089 . . . . . . . . . . . . . . 15 (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
14521, 144bitri 275 . . . . . . . . . . . . . 14 (𝜓 ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
146 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑦 = 𝑎)
147146eleq1d 2829 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑦𝐵𝑎𝐵))
148147anbi2d 629 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑎𝐵)))
149 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑤 = 𝑧)
150149eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑤𝐵𝑧𝐵))
151150anbi2d 629 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ (𝑧𝐵𝑧𝐵)))
152 anidm 564 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐵𝑧𝐵) ↔ 𝑧𝐵)
153151, 152bitrdi 287 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ 𝑧𝐵))
154148, 153anbi12d 631 . . . . . . . . . . . . . . . 16 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ↔ ((𝑥𝐵𝑎𝐵) ∧ 𝑧𝐵)))
155 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑥𝐵𝑎𝐵𝑧𝐵) ↔ ((𝑥𝐵𝑎𝐵) ∧ 𝑧𝐵))
156154, 155bitr4di 289 . . . . . . . . . . . . . . 15 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ↔ (𝑥𝐵𝑎𝐵𝑧𝐵)))
157 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑓 = 𝑟)
158146oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑥𝐻𝑦) = (𝑥𝐻𝑎))
159157, 158eleq12d 2838 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑟 ∈ (𝑥𝐻𝑎)))
160146oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑦𝐻𝑧) = (𝑎𝐻𝑧))
161160eleq2d 2830 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑎𝐻𝑧)))
162149oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑧𝐻𝑤) = (𝑧𝐻𝑧))
163162eleq2d 2830 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ (𝑧𝐻𝑧)))
164159, 161, 1633anbi123d 1436 . . . . . . . . . . . . . . . 16 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))
165 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑧)) ↔ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))
166164, 165bitrdi 287 . . . . . . . . . . . . . . 15 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))
167156, 166anbi12d 631 . . . . . . . . . . . . . 14 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))))
168145, 167bitrid 283 . . . . . . . . . . . . 13 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝜓 ↔ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))))
169168anbi2d 629 . . . . . . . . . . . 12 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))))
170146opeq2d 4904 . . . . . . . . . . . . . . 15 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑎⟩)
171170oveq1d 7463 . . . . . . . . . . . . . 14 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑥, 𝑎· 𝑧))
172 eqidd 2741 . . . . . . . . . . . . . 14 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑔 = 𝑔)
173171, 172, 157oveq123d 7469 . . . . . . . . . . . . 13 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))
174173eleq1d 2829 . . . . . . . . . . . 12 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ↔ (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧)))
175169, 174imbi12d 344 . . . . . . . . . . 11 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))))
176175sbiedvw 2095 . . . . . . . . . 10 ((𝑦 = 𝑎𝑤 = 𝑧) → ([𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))))
177176sbiedvw 2095 . . . . . . . . 9 (𝑦 = 𝑎 → ([𝑧 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))))
178 iscatd2.4 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
179178sbt 2066 . . . . . . . . . 10 [𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
180179sbt 2066 . . . . . . . . 9 [𝑧 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
181177, 180chvarvv 1998 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))
182143, 181chvarvv 1998 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧))
183182exp45 438 . . . . . 6 (𝜑 → ((𝑦𝐵𝑎𝐵𝑧𝐵) → ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) → (𝑘 ∈ (𝑧𝐻𝑧) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))))
1841833imp 1111 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (𝑘 ∈ (𝑧𝐻𝑧) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))
185184exlimdv 1932 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (∃𝑘 𝑘 ∈ (𝑧𝐻𝑧) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))
186129, 185mpd 15 . . 3 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧))
187130anbi1d 630 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐵𝑎𝐵) ↔ (𝑦𝐵𝑎𝐵)))
188187anbi1d 630 . . . . . 6 (𝑥 = 𝑦 → (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ↔ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵))))
1891333anbi1d 1440 . . . . . 6 (𝑥 = 𝑦 → ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
190188, 1893anbi23d 1439 . . . . 5 (𝑥 = 𝑦 → ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (𝜑 ∧ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
191138oveq1d 7463 . . . . . . 7 (𝑥 = 𝑦 → (⟨𝑥, 𝑎· 𝑤) = (⟨𝑦, 𝑎· 𝑤))
192191oveqd 7465 . . . . . 6 (𝑥 = 𝑦 → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟))
193 opeq1 4897 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
194193oveq1d 7463 . . . . . . 7 (𝑥 = 𝑦 → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑦, 𝑧· 𝑤))
195 eqidd 2741 . . . . . . 7 (𝑥 = 𝑦𝑘 = 𝑘)
196194, 195, 140oveq123d 7469 . . . . . 6 (𝑥 = 𝑦 → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟)))
197192, 196eqeq12d 2756 . . . . 5 (𝑥 = 𝑦 → (((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)) ↔ ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟))))
198190, 197imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))) ↔ ((𝜑 ∧ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟)))))
199 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → 𝑦 = 𝑎)
200199eleq1d 2829 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑦𝐵𝑎𝐵))
201200anbi2d 629 . . . . . . . . . . . 12 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑎𝐵)))
202 simpr 484 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → 𝑓 = 𝑟)
203199oveq2d 7464 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑥𝐻𝑦) = (𝑥𝐻𝑎))
204202, 203eleq12d 2838 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑟 ∈ (𝑥𝐻𝑎)))
205199oveq1d 7463 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑦𝐻𝑧) = (𝑎𝐻𝑧))
206205eleq2d 2830 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑎𝐻𝑧)))
207204, 2063anbi12d 1437 . . . . . . . . . . . 12 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
208201, 2073anbi13d 1438 . . . . . . . . . . 11 ((𝑦 = 𝑎𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
20921, 208bitrid 283 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝜓 ↔ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
210 df-3an 1089 . . . . . . . . . 10 (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
211209, 210bitrdi 287 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝜓 ↔ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
212211anbi2d 629 . . . . . . . 8 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))))
213 3anass 1095 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (𝜑 ∧ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
214212, 213bitr4di 289 . . . . . . 7 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
215199opeq2d 4904 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑎⟩)
216215oveq1d 7463 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑥, 𝑎· 𝑤))
217199opeq1d 4903 . . . . . . . . . . 11 ((𝑦 = 𝑎𝑓 = 𝑟) → ⟨𝑦, 𝑧⟩ = ⟨𝑎, 𝑧⟩)
218217oveq1d 7463 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑎, 𝑧· 𝑤))
219218oveqd 7465 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝑘(⟨𝑎, 𝑧· 𝑤)𝑔))
220216, 219, 202oveq123d 7469 . . . . . . . 8 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟))
221215oveq1d 7463 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑥, 𝑎· 𝑧))
222 eqidd 2741 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → 𝑔 = 𝑔)
223221, 222, 202oveq123d 7469 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))
224223oveq2d 7464 . . . . . . . 8 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))
225220, 224eqeq12d 2756 . . . . . . 7 ((𝑦 = 𝑎𝑓 = 𝑟) → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))))
226214, 225imbi12d 344 . . . . . 6 ((𝑦 = 𝑎𝑓 = 𝑟) → (((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))))
227226sbiedvw 2095 . . . . 5 (𝑦 = 𝑎 → ([𝑟 / 𝑓]((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))))
228 iscatd2.5 . . . . . 6 ((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
229228sbt 2066 . . . . 5 [𝑟 / 𝑓]((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
230227, 229chvarvv 1998 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))
231198, 230chvarvv 1998 . . 3 ((𝜑 ∧ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟)))
2321, 2, 3, 4, 5, 61, 121, 186, 231iscatd 17731 . 2 (𝜑𝐶 ∈ Cat)
2331, 2, 3, 232, 5, 61, 121catidd 17738 . 2 (𝜑 → (Id‘𝐶) = (𝑦𝐵1 ))
234232, 233jca 511 1 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  [wsb 2064  wcel 2108  wne 2946  wral 3067  c0 4352  cop 4654  cmpt 5249  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-cat 17726  df-cid 17727
This theorem is referenced by:  oppccatid  17779  subccatid  17910  fuccatid  18039  setccatid  18151  catccatid  18173  estrccatid  18200  xpccatid  18257  rngccatidALTV  47995  ringccatidALTV  48029  isthincd2  48705  mndtccatid  48760
  Copyright terms: Public domain W3C validator