MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscatd2 Structured version   Visualization version   GIF version

Theorem iscatd2 17607
Description: Version of iscatd 17599 with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
iscatd2.b (𝜑𝐵 = (Base‘𝐶))
iscatd2.h (𝜑𝐻 = (Hom ‘𝐶))
iscatd2.o (𝜑· = (comp‘𝐶))
iscatd2.c (𝜑𝐶𝑉)
iscatd2.ps (𝜓 ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
iscatd2.1 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
iscatd2.2 ((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
iscatd2.3 ((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
iscatd2.4 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
iscatd2.5 ((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
Assertion
Ref Expression
iscatd2 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑤,𝑥,𝑧, 1   𝑦,𝑓,𝐵,𝑔,𝑘,𝑤,𝑥,𝑧   𝐶,𝑔,𝑘,𝑤,𝑦,𝑧   𝑓,𝐻,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧   · ,𝑓,𝑔,𝑘,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑓)   1 (𝑦)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,𝑘)

Proof of Theorem iscatd2
Dummy variables 𝑎 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscatd2.b . . 3 (𝜑𝐵 = (Base‘𝐶))
2 iscatd2.h . . 3 (𝜑𝐻 = (Hom ‘𝐶))
3 iscatd2.o . . 3 (𝜑· = (comp‘𝐶))
4 iscatd2.c . . 3 (𝜑𝐶𝑉)
5 iscatd2.1 . . 3 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
65ne0d 4331 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝐻𝑦) ≠ ∅)
763ad2antr1 1188 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → (𝑦𝐻𝑦) ≠ ∅)
8 n0 4342 . . . . 5 ((𝑦𝐻𝑦) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦𝐻𝑦))
97, 8sylib 217 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ∃𝑔 𝑔 ∈ (𝑦𝐻𝑦))
10 n0 4342 . . . . 5 ((𝑦𝐻𝑦) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦))
117, 10sylib 217 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦))
12 exdistrv 1959 . . . . 5 (∃𝑔𝑘(𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)) ↔ (∃𝑔 𝑔 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦)))
13 simpll 765 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝜑)
14 simplr2 1216 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑎𝐵)
15 simplr1 1215 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑦𝐵)
1614, 15jca 512 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → (𝑎𝐵𝑦𝐵))
17 simplr3 1217 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑟 ∈ (𝑎𝐻𝑦))
18 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑔 ∈ (𝑦𝐻𝑦))
19 simprr 771 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → 𝑘 ∈ (𝑦𝐻𝑦))
2017, 18, 193jca 1128 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))
21 iscatd2.ps . . . . . . . . . . . . . . 15 (𝜓 ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
22 simplll 773 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑥 = 𝑎)
2322eleq1d 2817 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑥𝐵𝑎𝐵))
2423anbi1d 630 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑎𝐵𝑦𝐵)))
25 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑧 = 𝑦)
2625eleq1d 2817 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑧𝐵𝑦𝐵))
27 simplr 767 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑤 = 𝑦)
2827eleq1d 2817 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑤𝐵𝑦𝐵))
2926, 28anbi12d 631 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ (𝑦𝐵𝑦𝐵)))
30 anidm 565 . . . . . . . . . . . . . . . . 17 ((𝑦𝐵𝑦𝐵) ↔ 𝑦𝐵)
3129, 30bitrdi 286 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ 𝑦𝐵))
32 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 𝑓 = 𝑟)
3322oveq1d 7408 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑥𝐻𝑦) = (𝑎𝐻𝑦))
3432, 33eleq12d 2826 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑟 ∈ (𝑎𝐻𝑦)))
3525oveq2d 7409 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑦𝐻𝑧) = (𝑦𝐻𝑦))
3635eleq2d 2818 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦𝐻𝑦)))
3725, 27oveq12d 7411 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑧𝐻𝑤) = (𝑦𝐻𝑦))
3837eleq2d 2818 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ (𝑦𝐻𝑦)))
3934, 36, 383anbi123d 1436 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))))
4024, 31, 393anbi123d 1436 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))))
4121, 40bitrid 282 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (𝜓 ↔ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))))
4241anbi2d 629 . . . . . . . . . . . . 13 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))))))
4322opeq1d 4872 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑦⟩)
4443oveq1d 7408 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑦) = (⟨𝑎, 𝑦· 𝑦))
45 eqidd 2732 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → 1 = 1 )
4644, 45, 32oveq123d 7414 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟))
4746, 32eqeq12d 2747 . . . . . . . . . . . . 13 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓 ↔ ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
4842, 47imbi12d 344 . . . . . . . . . . . 12 ((((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) ∧ 𝑓 = 𝑟) → (((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
4948sbiedvw 2096 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑧 = 𝑦) ∧ 𝑤 = 𝑦) → ([𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
5049sbiedvw 2096 . . . . . . . . . 10 ((𝑥 = 𝑎𝑧 = 𝑦) → ([𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
5150sbiedvw 2096 . . . . . . . . 9 (𝑥 = 𝑎 → ([𝑦 / 𝑧][𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓) ↔ ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)))
52 iscatd2.2 . . . . . . . . . . . 12 ((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5352sbt 2069 . . . . . . . . . . 11 [𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5453sbt 2069 . . . . . . . . . 10 [𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5554sbt 2069 . . . . . . . . 9 [𝑦 / 𝑧][𝑦 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
5651, 55chvarvv 2002 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝐵𝑦𝐵) ∧ 𝑦𝐵 ∧ (𝑟 ∈ (𝑎𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)
5713, 16, 15, 20, 56syl13anc 1372 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) ∧ (𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)
5857ex 413 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ((𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
5958exlimdvv 1937 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → (∃𝑔𝑘(𝑔 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑦𝐻𝑦)) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
6012, 59biimtrrid 242 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ((∃𝑔 𝑔 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑦𝐻𝑦)) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟))
619, 11, 60mp2and 697 . . 3 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑎𝐻𝑦))) → ( 1 (⟨𝑎, 𝑦· 𝑦)𝑟) = 𝑟)
6263ad2antr1 1188 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (𝑦𝐻𝑦) ≠ ∅)
63 n0 4342 . . . . 5 ((𝑦𝐻𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑦𝐻𝑦))
6462, 63sylib 217 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ∃𝑓 𝑓 ∈ (𝑦𝐻𝑦))
65 id 22 . . . . . . . 8 (𝑦 = 𝑎𝑦 = 𝑎)
6665, 65oveq12d 7411 . . . . . . 7 (𝑦 = 𝑎 → (𝑦𝐻𝑦) = (𝑎𝐻𝑎))
6766neeq1d 2999 . . . . . 6 (𝑦 = 𝑎 → ((𝑦𝐻𝑦) ≠ ∅ ↔ (𝑎𝐻𝑎) ≠ ∅))
686ralrimiva 3145 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑦𝐻𝑦) ≠ ∅)
6968adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ∀𝑦𝐵 (𝑦𝐻𝑦) ≠ ∅)
70 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → 𝑎𝐵)
7167, 69, 70rspcdva 3610 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (𝑎𝐻𝑎) ≠ ∅)
72 n0 4342 . . . . 5 ((𝑎𝐻𝑎) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎))
7371, 72sylib 217 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎))
74 exdistrv 1959 . . . . 5 (∃𝑓𝑘(𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎)) ↔ (∃𝑓 𝑓 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎)))
75 simpll 765 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝜑)
76 simplr1 1215 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑦𝐵)
77 simplr2 1216 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑎𝐵)
78 simprl 769 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑓 ∈ (𝑦𝐻𝑦))
79 simplr3 1217 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑟 ∈ (𝑦𝐻𝑎))
80 simprr 771 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → 𝑘 ∈ (𝑎𝐻𝑎))
8178, 79, 803jca 1128 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))
82 simplll 773 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑥 = 𝑦)
8382eleq1d 2817 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑥𝐵𝑦𝐵))
8483anbi1d 630 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑦𝐵𝑦𝐵)))
8584, 30bitrdi 286 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ 𝑦𝐵))
86 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑧 = 𝑎)
8786eleq1d 2817 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑧𝐵𝑎𝐵))
88 simplr 767 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑤 = 𝑎)
8988eleq1d 2817 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑤𝐵𝑎𝐵))
9087, 89anbi12d 631 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ (𝑎𝐵𝑎𝐵)))
91 anidm 565 . . . . . . . . . . . . . . . . 17 ((𝑎𝐵𝑎𝐵) ↔ 𝑎𝐵)
9290, 91bitrdi 286 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ 𝑎𝐵))
9382oveq1d 7408 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑥𝐻𝑦) = (𝑦𝐻𝑦))
9493eleq2d 2818 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑦𝐻𝑦)))
95 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 𝑔 = 𝑟)
9686oveq2d 7409 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑦𝐻𝑧) = (𝑦𝐻𝑎))
9795, 96eleq12d 2826 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑟 ∈ (𝑦𝐻𝑎)))
9886, 88oveq12d 7411 . . . . . . . . . . . . . . . . . 18 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑧𝐻𝑤) = (𝑎𝐻𝑎))
9998eleq2d 2818 . . . . . . . . . . . . . . . . 17 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ (𝑎𝐻𝑎)))
10094, 97, 993anbi123d 1436 . . . . . . . . . . . . . . . 16 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎))))
10185, 92, 1003anbi123d 1436 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))))
10221, 101bitrid 282 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝜓 ↔ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))))
103102anbi2d 629 . . . . . . . . . . . . 13 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎))))))
10486oveq2d 7409 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (⟨𝑦, 𝑦· 𝑧) = (⟨𝑦, 𝑦· 𝑎))
105 eqidd 2732 . . . . . . . . . . . . . . 15 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → 1 = 1 )
106104, 95, 105oveq123d 7414 . . . . . . . . . . . . . 14 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ))
107106, 95eqeq12d 2747 . . . . . . . . . . . . 13 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → ((𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔 ↔ (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
108103, 107imbi12d 344 . . . . . . . . . . . 12 ((((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) ∧ 𝑔 = 𝑟) → (((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
109108sbiedvw 2096 . . . . . . . . . . 11 (((𝑥 = 𝑦𝑧 = 𝑎) ∧ 𝑤 = 𝑎) → ([𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
110109sbiedvw 2096 . . . . . . . . . 10 ((𝑥 = 𝑦𝑧 = 𝑎) → ([𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
111110sbiedvw 2096 . . . . . . . . 9 (𝑥 = 𝑦 → ([𝑎 / 𝑧][𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔) ↔ ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)))
112 iscatd2.3 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
113112sbt 2069 . . . . . . . . . . 11 [𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
114113sbt 2069 . . . . . . . . . 10 [𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
115114sbt 2069 . . . . . . . . 9 [𝑎 / 𝑧][𝑎 / 𝑤][𝑟 / 𝑔]((𝜑𝜓) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
116111, 115chvarvv 2002 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑎𝐵 ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑘 ∈ (𝑎𝐻𝑎)))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)
11775, 76, 77, 81, 116syl13anc 1372 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) ∧ (𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)
118117ex 413 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ((𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎)) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
119118exlimdvv 1937 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (∃𝑓𝑘(𝑓 ∈ (𝑦𝐻𝑦) ∧ 𝑘 ∈ (𝑎𝐻𝑎)) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
12074, 119biimtrrid 242 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → ((∃𝑓 𝑓 ∈ (𝑦𝐻𝑦) ∧ ∃𝑘 𝑘 ∈ (𝑎𝐻𝑎)) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟))
12164, 73, 120mp2and 697 . . 3 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑟 ∈ (𝑦𝐻𝑎))) → (𝑟(⟨𝑦, 𝑦· 𝑎) 1 ) = 𝑟)
122 id 22 . . . . . . . 8 (𝑦 = 𝑧𝑦 = 𝑧)
123122, 122oveq12d 7411 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐻𝑦) = (𝑧𝐻𝑧))
124123neeq1d 2999 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑧) ≠ ∅))
125683ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → ∀𝑦𝐵 (𝑦𝐻𝑦) ≠ ∅)
126 simp23 1208 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → 𝑧𝐵)
127124, 125, 126rspcdva 3610 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (𝑧𝐻𝑧) ≠ ∅)
128 n0 4342 . . . . 5 ((𝑧𝐻𝑧) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑧𝐻𝑧))
129127, 128sylib 217 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → ∃𝑘 𝑘 ∈ (𝑧𝐻𝑧))
130 eleq1w 2815 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1311303anbi1d 1440 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐵𝑎𝐵𝑧𝐵) ↔ (𝑦𝐵𝑎𝐵𝑧𝐵)))
132 oveq1 7400 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥𝐻𝑎) = (𝑦𝐻𝑎))
133132eleq2d 2818 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑟 ∈ (𝑥𝐻𝑎) ↔ 𝑟 ∈ (𝑦𝐻𝑎)))
134133anbi1d 630 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ↔ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))))
135134anbi1d 630 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)) ↔ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))
136131, 135anbi12d 631 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))) ↔ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))))
137136anbi2d 629 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) ↔ (𝜑 ∧ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))))
138 opeq1 4866 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ⟨𝑥, 𝑎⟩ = ⟨𝑦, 𝑎⟩)
139138oveq1d 7408 . . . . . . . . . . 11 (𝑥 = 𝑦 → (⟨𝑥, 𝑎· 𝑧) = (⟨𝑦, 𝑎· 𝑧))
140139oveqd 7410 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) = (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟))
141 oveq1 7400 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐻𝑧) = (𝑦𝐻𝑧))
142140, 141eleq12d 2826 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧) ↔ (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))
143137, 142imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧))))
144 df-3an 1089 . . . . . . . . . . . . . . 15 (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
14521, 144bitri 274 . . . . . . . . . . . . . 14 (𝜓 ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
146 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑦 = 𝑎)
147146eleq1d 2817 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑦𝐵𝑎𝐵))
148147anbi2d 629 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑎𝐵)))
149 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑤 = 𝑧)
150149eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑤𝐵𝑧𝐵))
151150anbi2d 629 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ (𝑧𝐵𝑧𝐵)))
152 anidm 565 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐵𝑧𝐵) ↔ 𝑧𝐵)
153151, 152bitrdi 286 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑧𝐵𝑤𝐵) ↔ 𝑧𝐵))
154148, 153anbi12d 631 . . . . . . . . . . . . . . . 16 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ↔ ((𝑥𝐵𝑎𝐵) ∧ 𝑧𝐵)))
155 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑥𝐵𝑎𝐵𝑧𝐵) ↔ ((𝑥𝐵𝑎𝐵) ∧ 𝑧𝐵))
156154, 155bitr4di 288 . . . . . . . . . . . . . . 15 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ↔ (𝑥𝐵𝑎𝐵𝑧𝐵)))
157 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑓 = 𝑟)
158146oveq2d 7409 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑥𝐻𝑦) = (𝑥𝐻𝑎))
159157, 158eleq12d 2826 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑟 ∈ (𝑥𝐻𝑎)))
160146oveq1d 7408 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑦𝐻𝑧) = (𝑎𝐻𝑧))
161160eleq2d 2818 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑎𝐻𝑧)))
162149oveq2d 7409 . . . . . . . . . . . . . . . . . 18 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑧𝐻𝑤) = (𝑧𝐻𝑧))
163162eleq2d 2818 . . . . . . . . . . . . . . . . 17 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ (𝑧𝐻𝑧)))
164159, 161, 1633anbi123d 1436 . . . . . . . . . . . . . . . 16 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))
165 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑧)) ↔ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))
166164, 165bitrdi 286 . . . . . . . . . . . . . . 15 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))
167156, 166anbi12d 631 . . . . . . . . . . . . . 14 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))))
168145, 167bitrid 282 . . . . . . . . . . . . 13 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝜓 ↔ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))))
169168anbi2d 629 . . . . . . . . . . . 12 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧))))))
170146opeq2d 4873 . . . . . . . . . . . . . . 15 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑎⟩)
171170oveq1d 7408 . . . . . . . . . . . . . 14 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑥, 𝑎· 𝑧))
172 eqidd 2732 . . . . . . . . . . . . . 14 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → 𝑔 = 𝑔)
173171, 172, 157oveq123d 7414 . . . . . . . . . . . . 13 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))
174173eleq1d 2817 . . . . . . . . . . . 12 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ↔ (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧)))
175169, 174imbi12d 344 . . . . . . . . . . 11 (((𝑦 = 𝑎𝑤 = 𝑧) ∧ 𝑓 = 𝑟) → (((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))))
176175sbiedvw 2096 . . . . . . . . . 10 ((𝑦 = 𝑎𝑤 = 𝑧) → ([𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))))
177176sbiedvw 2096 . . . . . . . . 9 (𝑦 = 𝑎 → ([𝑧 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))))
178 iscatd2.4 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
179178sbt 2069 . . . . . . . . . 10 [𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
180179sbt 2069 . . . . . . . . 9 [𝑧 / 𝑤][𝑟 / 𝑓]((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
181177, 180chvarvv 2002 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟) ∈ (𝑥𝐻𝑧))
182143, 181chvarvv 2002 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑎𝐵𝑧𝐵) ∧ ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑧)))) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧))
183182exp45 439 . . . . . 6 (𝜑 → ((𝑦𝐵𝑎𝐵𝑧𝐵) → ((𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧)) → (𝑘 ∈ (𝑧𝐻𝑧) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))))
1841833imp 1111 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (𝑘 ∈ (𝑧𝐻𝑧) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))
185184exlimdv 1936 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (∃𝑘 𝑘 ∈ (𝑧𝐻𝑧) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧)))
186129, 185mpd 15 . . 3 ((𝜑 ∧ (𝑦𝐵𝑎𝐵𝑧𝐵) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧))) → (𝑔(⟨𝑦, 𝑎· 𝑧)𝑟) ∈ (𝑦𝐻𝑧))
187130anbi1d 630 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐵𝑎𝐵) ↔ (𝑦𝐵𝑎𝐵)))
188187anbi1d 630 . . . . . 6 (𝑥 = 𝑦 → (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ↔ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵))))
1891333anbi1d 1440 . . . . . 6 (𝑥 = 𝑦 → ((𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
190188, 1893anbi23d 1439 . . . . 5 (𝑥 = 𝑦 → ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (𝜑 ∧ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
191138oveq1d 7408 . . . . . . 7 (𝑥 = 𝑦 → (⟨𝑥, 𝑎· 𝑤) = (⟨𝑦, 𝑎· 𝑤))
192191oveqd 7410 . . . . . 6 (𝑥 = 𝑦 → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟))
193 opeq1 4866 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
194193oveq1d 7408 . . . . . . 7 (𝑥 = 𝑦 → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑦, 𝑧· 𝑤))
195 eqidd 2732 . . . . . . 7 (𝑥 = 𝑦𝑘 = 𝑘)
196194, 195, 140oveq123d 7414 . . . . . 6 (𝑥 = 𝑦 → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟)))
197192, 196eqeq12d 2747 . . . . 5 (𝑥 = 𝑦 → (((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)) ↔ ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟))))
198190, 197imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))) ↔ ((𝜑 ∧ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟)))))
199 simpl 483 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → 𝑦 = 𝑎)
200199eleq1d 2817 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑦𝐵𝑎𝐵))
201200anbi2d 629 . . . . . . . . . . . 12 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑎𝐵)))
202 simpr 485 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → 𝑓 = 𝑟)
203199oveq2d 7409 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑥𝐻𝑦) = (𝑥𝐻𝑎))
204202, 203eleq12d 2826 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑟 ∈ (𝑥𝐻𝑎)))
205199oveq1d 7408 . . . . . . . . . . . . . 14 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑦𝐻𝑧) = (𝑎𝐻𝑧))
206205eleq2d 2818 . . . . . . . . . . . . 13 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑎𝐻𝑧)))
207204, 2063anbi12d 1437 . . . . . . . . . . . 12 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
208201, 2073anbi13d 1438 . . . . . . . . . . 11 ((𝑦 = 𝑎𝑓 = 𝑟) → (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
20921, 208bitrid 282 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝜓 ↔ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
210 df-3an 1089 . . . . . . . . . 10 (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
211209, 210bitrdi 286 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝜓 ↔ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
212211anbi2d 629 . . . . . . . 8 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))))
213 3anass 1095 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (𝜑 ∧ (((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
214212, 213bitr4di 288 . . . . . . 7 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))))
215199opeq2d 4873 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑎⟩)
216215oveq1d 7408 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑥, 𝑎· 𝑤))
217199opeq1d 4872 . . . . . . . . . . 11 ((𝑦 = 𝑎𝑓 = 𝑟) → ⟨𝑦, 𝑧⟩ = ⟨𝑎, 𝑧⟩)
218217oveq1d 7408 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑎, 𝑧· 𝑤))
219218oveqd 7410 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝑘(⟨𝑎, 𝑧· 𝑤)𝑔))
220216, 219, 202oveq123d 7414 . . . . . . . 8 ((𝑦 = 𝑎𝑓 = 𝑟) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟))
221215oveq1d 7408 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑥, 𝑎· 𝑧))
222 eqidd 2732 . . . . . . . . . 10 ((𝑦 = 𝑎𝑓 = 𝑟) → 𝑔 = 𝑔)
223221, 222, 202oveq123d 7414 . . . . . . . . 9 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))
224223oveq2d 7409 . . . . . . . 8 ((𝑦 = 𝑎𝑓 = 𝑟) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))
225220, 224eqeq12d 2747 . . . . . . 7 ((𝑦 = 𝑎𝑓 = 𝑟) → (((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ↔ ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟))))
226214, 225imbi12d 344 . . . . . 6 ((𝑦 = 𝑎𝑓 = 𝑟) → (((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))))
227226sbiedvw 2096 . . . . 5 (𝑦 = 𝑎 → ([𝑟 / 𝑓]((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓))) ↔ ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))))
228 iscatd2.5 . . . . . 6 ((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
229228sbt 2069 . . . . 5 [𝑟 / 𝑓]((𝜑𝜓) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
230227, 229chvarvv 2002 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑥𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑎· 𝑧)𝑟)))
231198, 230chvarvv 2002 . . 3 ((𝜑 ∧ ((𝑦𝐵𝑎𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑟 ∈ (𝑦𝐻𝑎) ∧ 𝑔 ∈ (𝑎𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑎, 𝑧· 𝑤)𝑔)(⟨𝑦, 𝑎· 𝑤)𝑟) = (𝑘(⟨𝑦, 𝑧· 𝑤)(𝑔(⟨𝑦, 𝑎· 𝑧)𝑟)))
2321, 2, 3, 4, 5, 61, 121, 186, 231iscatd 17599 . 2 (𝜑𝐶 ∈ Cat)
2331, 2, 3, 232, 5, 61, 121catidd 17606 . 2 (𝜑 → (Id‘𝐶) = (𝑦𝐵1 ))
234232, 233jca 512 1 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  [wsb 2067  wcel 2106  wne 2939  wral 3060  c0 4318  cop 4628  cmpt 5224  cfv 6532  (class class class)co 7393  Basecbs 17126  Hom chom 17190  compcco 17191  Catccat 17590  Idccid 17591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-cat 17594  df-cid 17595
This theorem is referenced by:  oppccatid  17647  subccatid  17778  fuccatid  17904  setccatid  18016  catccatid  18038  estrccatid  18065  xpccatid  18122  rngccatidALTV  46535  ringccatidALTV  46598  isthincd2  47306  mndtccatid  47361
  Copyright terms: Public domain W3C validator