 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnOLD Structured version   Visualization version   GIF version

Theorem sbnOLD 2495
 Description: Obsolete version of sbn 2253 as of 8-Jul-2023. Negation inside and outside of substitution are equivalent. For a version requiring disjoint variables, but fewer axioms, see sbnvOLD 2287. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbnOLD ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbnOLD
StepHypRef Expression
1 dfsb1 2464 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)))
2 exanali 1840 . . . 4 (∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝑥 = 𝑦𝜑))
32anbi2i 622 . . 3 (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)) ↔ ((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦𝜑)))
4 annim 404 . . 3 (((𝑥 = 𝑦 → ¬ 𝜑) ∧ ¬ ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 3, 43bitri 298 . 2 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
6 dfsb3 2487 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
75, 6xchbinxr 336 1 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396  ∀wal 1520  ∃wex 1761  [wsb 2042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-10 2112  ax-12 2141  ax-13 2344 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ex 1762  df-nf 1766  df-sb 2043 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator