Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seppsepf Structured version   Visualization version   GIF version

Theorem seppsepf 46222
Description: If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
seppsepf.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
Assertion
Ref Expression
seppsepf (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))

Proof of Theorem seppsepf
StepHypRef Expression
1 seppsepf.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
2 eqimss 3977 . . . 4 (𝑆 = (𝑓 “ {0}) → 𝑆 ⊆ (𝑓 “ {0}))
3 eqimss 3977 . . . 4 (𝑇 = (𝑓 “ {1}) → 𝑇 ⊆ (𝑓 “ {1}))
42, 3anim12i 613 . . 3 ((𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
54reximi 3178 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
61, 5syl 17 1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wrex 3065  wss 3887  {csn 4561  ccnv 5588  cima 5592  (class class class)co 7275  0cc0 10871  1c1 10872   Cn ccn 22375  IIcii 24038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator