Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seppcld Structured version   Visualization version   GIF version

Theorem seppcld 48912
Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
seppsepf.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
Assertion
Ref Expression
seppcld (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑆,𝑓   𝑇,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem seppcld
StepHypRef Expression
1 seppsepf.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
2 simprl 770 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 = (𝑓 “ {0}))
3 simpl 482 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
4 0xr 11199 . . . . . . . 8 0 ∈ ℝ*
5 iccid 13329 . . . . . . . 8 (0 ∈ ℝ* → (0[,]0) = {0})
64, 5ax-mp 5 . . . . . . 7 (0[,]0) = {0}
7 0le0 12265 . . . . . . . 8 0 ≤ 0
8 0le1 11679 . . . . . . . 8 0 ≤ 1
9 icccldii 48901 . . . . . . . 8 ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II))
107, 8, 9mp2an 692 . . . . . . 7 (0[,]0) ∈ (Clsd‘II)
116, 10eqeltrri 2825 . . . . . 6 {0} ∈ (Clsd‘II)
12 cnclima 23189 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
133, 11, 12sylancl 586 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
142, 13eqeltrd 2828 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽))
15 simprr 772 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 = (𝑓 “ {1}))
16 1xr 11211 . . . . . . . 8 1 ∈ ℝ*
17 iccid 13329 . . . . . . . 8 (1 ∈ ℝ* → (1[,]1) = {1})
1816, 17ax-mp 5 . . . . . . 7 (1[,]1) = {1}
19 1le1 11784 . . . . . . . 8 1 ≤ 1
20 icccldii 48901 . . . . . . . 8 ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II))
218, 19, 20mp2an 692 . . . . . . 7 (1[,]1) ∈ (Clsd‘II)
2218, 21eqeltrri 2825 . . . . . 6 {1} ∈ (Clsd‘II)
23 cnclima 23189 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
243, 22, 23sylancl 586 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
2515, 24eqeltrd 2828 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽))
2614, 25jca 511 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
2726rexlimiva 3126 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
281, 27syl 17 1 (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4585   class class class wbr 5102  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369  0cc0 11046  1c1 11047  *cxr 11185  cle 11187  [,]cicc 13287  Clsdccld 22937   Cn ccn 23145  IIcii 24802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-rest 17362  df-topgen 17383  df-ordt 17441  df-ps 18508  df-tsr 18509  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-top 22815  df-topon 22832  df-bases 22867  df-cld 22940  df-cn 23148  df-ii 24804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator