Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seppcld Structured version   Visualization version   GIF version

Theorem seppcld 48827
Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
seppsepf.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
Assertion
Ref Expression
seppcld (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑆,𝑓   𝑇,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem seppcld
StepHypRef Expression
1 seppsepf.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
2 simprl 771 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 = (𝑓 “ {0}))
3 simpl 482 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
4 0xr 11308 . . . . . . . 8 0 ∈ ℝ*
5 iccid 13432 . . . . . . . 8 (0 ∈ ℝ* → (0[,]0) = {0})
64, 5ax-mp 5 . . . . . . 7 (0[,]0) = {0}
7 0le0 12367 . . . . . . . 8 0 ≤ 0
8 0le1 11786 . . . . . . . 8 0 ≤ 1
9 icccldii 48816 . . . . . . . 8 ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II))
107, 8, 9mp2an 692 . . . . . . 7 (0[,]0) ∈ (Clsd‘II)
116, 10eqeltrri 2838 . . . . . 6 {0} ∈ (Clsd‘II)
12 cnclima 23276 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
133, 11, 12sylancl 586 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
142, 13eqeltrd 2841 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽))
15 simprr 773 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 = (𝑓 “ {1}))
16 1xr 11320 . . . . . . . 8 1 ∈ ℝ*
17 iccid 13432 . . . . . . . 8 (1 ∈ ℝ* → (1[,]1) = {1})
1816, 17ax-mp 5 . . . . . . 7 (1[,]1) = {1}
19 1le1 11891 . . . . . . . 8 1 ≤ 1
20 icccldii 48816 . . . . . . . 8 ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II))
218, 19, 20mp2an 692 . . . . . . 7 (1[,]1) ∈ (Clsd‘II)
2218, 21eqeltrri 2838 . . . . . 6 {1} ∈ (Clsd‘II)
23 cnclima 23276 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
243, 22, 23sylancl 586 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
2515, 24eqeltrd 2841 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽))
2614, 25jca 511 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
2726rexlimiva 3147 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
281, 27syl 17 1 (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  {csn 4626   class class class wbr 5143  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  *cxr 11294  cle 11296  [,]cicc 13390  Clsdccld 23024   Cn ccn 23232  IIcii 24901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rest 17467  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-cn 23235  df-ii 24903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator