Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seppcld Structured version   Visualization version   GIF version

Theorem seppcld 45924
Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
seppsepf.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
Assertion
Ref Expression
seppcld (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑆,𝑓   𝑇,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem seppcld
StepHypRef Expression
1 seppsepf.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
2 simprl 771 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 = (𝑓 “ {0}))
3 simpl 486 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
4 0xr 10904 . . . . . . . 8 0 ∈ ℝ*
5 iccid 13004 . . . . . . . 8 (0 ∈ ℝ* → (0[,]0) = {0})
64, 5ax-mp 5 . . . . . . 7 (0[,]0) = {0}
7 0le0 11955 . . . . . . . 8 0 ≤ 0
8 0le1 11379 . . . . . . . 8 0 ≤ 1
9 icccldii 45913 . . . . . . . 8 ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II))
107, 8, 9mp2an 692 . . . . . . 7 (0[,]0) ∈ (Clsd‘II)
116, 10eqeltrri 2836 . . . . . 6 {0} ∈ (Clsd‘II)
12 cnclima 22189 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
133, 11, 12sylancl 589 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
142, 13eqeltrd 2839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽))
15 simprr 773 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 = (𝑓 “ {1}))
16 1xr 10916 . . . . . . . 8 1 ∈ ℝ*
17 iccid 13004 . . . . . . . 8 (1 ∈ ℝ* → (1[,]1) = {1})
1816, 17ax-mp 5 . . . . . . 7 (1[,]1) = {1}
19 1le1 11484 . . . . . . . 8 1 ≤ 1
20 icccldii 45913 . . . . . . . 8 ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II))
218, 19, 20mp2an 692 . . . . . . 7 (1[,]1) ∈ (Clsd‘II)
2218, 21eqeltrri 2836 . . . . . 6 {1} ∈ (Clsd‘II)
23 cnclima 22189 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
243, 22, 23sylancl 589 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
2515, 24eqeltrd 2839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽))
2614, 25jca 515 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
2726rexlimiva 3208 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
281, 27syl 17 1 (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wrex 3063  {csn 4555   class class class wbr 5067  ccnv 5564  cima 5568  cfv 6397  (class class class)co 7231  0cc0 10753  1c1 10754  *cxr 10890  cle 10892  [,]cicc 12962  Clsdccld 21937   Cn ccn 22145  IIcii 23796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-iin 4921  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-er 8411  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-fi 9051  df-sup 9082  df-inf 9083  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-n0 12115  df-z 12201  df-uz 12463  df-q 12569  df-rp 12611  df-xneg 12728  df-xadd 12729  df-xmul 12730  df-ioo 12963  df-ioc 12964  df-ico 12965  df-icc 12966  df-seq 13599  df-exp 13660  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823  df-rest 16951  df-topgen 16972  df-ordt 17030  df-ps 18096  df-tsr 18097  df-psmet 20379  df-xmet 20380  df-met 20381  df-bl 20382  df-mopn 20383  df-top 21815  df-topon 21832  df-bases 21867  df-cld 21940  df-cn 22148  df-ii 23798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator