Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seppcld Structured version   Visualization version   GIF version

Theorem seppcld 48726
Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
seppsepf.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
Assertion
Ref Expression
seppcld (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑆,𝑓   𝑇,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem seppcld
StepHypRef Expression
1 seppsepf.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
2 simprl 771 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 = (𝑓 “ {0}))
3 simpl 482 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
4 0xr 11306 . . . . . . . 8 0 ∈ ℝ*
5 iccid 13429 . . . . . . . 8 (0 ∈ ℝ* → (0[,]0) = {0})
64, 5ax-mp 5 . . . . . . 7 (0[,]0) = {0}
7 0le0 12365 . . . . . . . 8 0 ≤ 0
8 0le1 11784 . . . . . . . 8 0 ≤ 1
9 icccldii 48715 . . . . . . . 8 ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II))
107, 8, 9mp2an 692 . . . . . . 7 (0[,]0) ∈ (Clsd‘II)
116, 10eqeltrri 2836 . . . . . 6 {0} ∈ (Clsd‘II)
12 cnclima 23292 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
133, 11, 12sylancl 586 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
142, 13eqeltrd 2839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽))
15 simprr 773 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 = (𝑓 “ {1}))
16 1xr 11318 . . . . . . . 8 1 ∈ ℝ*
17 iccid 13429 . . . . . . . 8 (1 ∈ ℝ* → (1[,]1) = {1})
1816, 17ax-mp 5 . . . . . . 7 (1[,]1) = {1}
19 1le1 11889 . . . . . . . 8 1 ≤ 1
20 icccldii 48715 . . . . . . . 8 ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II))
218, 19, 20mp2an 692 . . . . . . 7 (1[,]1) ∈ (Clsd‘II)
2218, 21eqeltrri 2836 . . . . . 6 {1} ∈ (Clsd‘II)
23 cnclima 23292 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
243, 22, 23sylancl 586 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
2515, 24eqeltrd 2839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽))
2614, 25jca 511 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
2726rexlimiva 3145 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
281, 27syl 17 1 (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  {csn 4631   class class class wbr 5148  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  *cxr 11292  cle 11294  [,]cicc 13387  Clsdccld 23040   Cn ccn 23248  IIcii 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-rest 17469  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-cn 23251  df-ii 24917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator