| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > seppcld | Structured version Visualization version GIF version | ||
| Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| seppsepf.1 | ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) |
| Ref | Expression |
|---|---|
| seppcld | ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seppsepf.1 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) | |
| 2 | simprl 770 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑆 = (◡𝑓 “ {0})) | |
| 3 | simpl 482 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II)) | |
| 4 | 0xr 11274 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 5 | iccid 13398 | . . . . . . . 8 ⊢ (0 ∈ ℝ* → (0[,]0) = {0}) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]0) = {0} |
| 7 | 0le0 12333 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
| 8 | 0le1 11752 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 9 | icccldii 48772 | . . . . . . . 8 ⊢ ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (0[,]0) ∈ (Clsd‘II) |
| 11 | 6, 10 | eqeltrri 2830 | . . . . . 6 ⊢ {0} ∈ (Clsd‘II) |
| 12 | cnclima 23191 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (◡𝑓 “ {0}) ∈ (Clsd‘𝐽)) | |
| 13 | 3, 11, 12 | sylancl 586 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → (◡𝑓 “ {0}) ∈ (Clsd‘𝐽)) |
| 14 | 2, 13 | eqeltrd 2833 | . . . 4 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽)) |
| 15 | simprr 772 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑇 = (◡𝑓 “ {1})) | |
| 16 | 1xr 11286 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 17 | iccid 13398 | . . . . . . . 8 ⊢ (1 ∈ ℝ* → (1[,]1) = {1}) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (1[,]1) = {1} |
| 19 | 1le1 11857 | . . . . . . . 8 ⊢ 1 ≤ 1 | |
| 20 | icccldii 48772 | . . . . . . . 8 ⊢ ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II)) | |
| 21 | 8, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (1[,]1) ∈ (Clsd‘II) |
| 22 | 18, 21 | eqeltrri 2830 | . . . . . 6 ⊢ {1} ∈ (Clsd‘II) |
| 23 | cnclima 23191 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (◡𝑓 “ {1}) ∈ (Clsd‘𝐽)) | |
| 24 | 3, 22, 23 | sylancl 586 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → (◡𝑓 “ {1}) ∈ (Clsd‘𝐽)) |
| 25 | 15, 24 | eqeltrd 2833 | . . . 4 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽)) |
| 26 | 14, 25 | jca 511 | . . 3 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| 27 | 26 | rexlimiva 3131 | . 2 ⊢ (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| 28 | 1, 27 | syl 17 | 1 ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {csn 4599 class class class wbr 5116 ◡ccnv 5650 “ cima 5654 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 ℝ*cxr 11260 ≤ cle 11262 [,]cicc 13356 Clsdccld 22939 Cn ccn 23147 IIcii 24804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fi 9417 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-n0 12494 df-z 12581 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ioc 13358 df-ico 13359 df-icc 13360 df-seq 14009 df-exp 14069 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-rest 17421 df-topgen 17442 df-ordt 17500 df-ps 18561 df-tsr 18562 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-top 22817 df-topon 22834 df-bases 22869 df-cld 22942 df-cn 23150 df-ii 24806 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |