| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > seppcld | Structured version Visualization version GIF version | ||
| Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| seppsepf.1 | ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) |
| Ref | Expression |
|---|---|
| seppcld | ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seppsepf.1 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) | |
| 2 | simprl 770 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑆 = (◡𝑓 “ {0})) | |
| 3 | simpl 482 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II)) | |
| 4 | 0xr 11169 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 5 | iccid 13300 | . . . . . . . 8 ⊢ (0 ∈ ℝ* → (0[,]0) = {0}) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0[,]0) = {0} |
| 7 | 0le0 12236 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
| 8 | 0le1 11650 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 9 | icccldii 49033 | . . . . . . . 8 ⊢ ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (0[,]0) ∈ (Clsd‘II) |
| 11 | 6, 10 | eqeltrri 2830 | . . . . . 6 ⊢ {0} ∈ (Clsd‘II) |
| 12 | cnclima 23193 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (◡𝑓 “ {0}) ∈ (Clsd‘𝐽)) | |
| 13 | 3, 11, 12 | sylancl 586 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → (◡𝑓 “ {0}) ∈ (Clsd‘𝐽)) |
| 14 | 2, 13 | eqeltrd 2833 | . . . 4 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽)) |
| 15 | simprr 772 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑇 = (◡𝑓 “ {1})) | |
| 16 | 1xr 11181 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 17 | iccid 13300 | . . . . . . . 8 ⊢ (1 ∈ ℝ* → (1[,]1) = {1}) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (1[,]1) = {1} |
| 19 | 1le1 11755 | . . . . . . . 8 ⊢ 1 ≤ 1 | |
| 20 | icccldii 49033 | . . . . . . . 8 ⊢ ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II)) | |
| 21 | 8, 19, 20 | mp2an 692 | . . . . . . 7 ⊢ (1[,]1) ∈ (Clsd‘II) |
| 22 | 18, 21 | eqeltrri 2830 | . . . . . 6 ⊢ {1} ∈ (Clsd‘II) |
| 23 | cnclima 23193 | . . . . . 6 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (◡𝑓 “ {1}) ∈ (Clsd‘𝐽)) | |
| 24 | 3, 22, 23 | sylancl 586 | . . . . 5 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → (◡𝑓 “ {1}) ∈ (Clsd‘𝐽)) |
| 25 | 15, 24 | eqeltrd 2833 | . . . 4 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽)) |
| 26 | 14, 25 | jca 511 | . . 3 ⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| 27 | 26 | rexlimiva 3127 | . 2 ⊢ (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (◡𝑓 “ {0}) ∧ 𝑇 = (◡𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| 28 | 1, 27 | syl 17 | 1 ⊢ (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 {csn 4577 class class class wbr 5095 ◡ccnv 5620 “ cima 5624 ‘cfv 6489 (class class class)co 7355 0cc0 11016 1c1 11017 ℝ*cxr 11155 ≤ cle 11157 [,]cicc 13258 Clsdccld 22941 Cn ccn 23149 IIcii 24805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fi 9305 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ioc 13260 df-ico 13261 df-icc 13262 df-seq 13919 df-exp 13979 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-rest 17336 df-topgen 17357 df-ordt 17415 df-ps 18482 df-tsr 18483 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-top 22819 df-topon 22836 df-bases 22871 df-cld 22944 df-cn 23152 df-ii 24807 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |