Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seppcld Structured version   Visualization version   GIF version

Theorem seppcld 46111
Description: If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
seppsepf.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
Assertion
Ref Expression
seppcld (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑆,𝑓   𝑇,𝑓
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem seppcld
StepHypRef Expression
1 seppsepf.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))
2 simprl 767 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 = (𝑓 “ {0}))
3 simpl 482 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
4 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
5 iccid 13053 . . . . . . . 8 (0 ∈ ℝ* → (0[,]0) = {0})
64, 5ax-mp 5 . . . . . . 7 (0[,]0) = {0}
7 0le0 12004 . . . . . . . 8 0 ≤ 0
8 0le1 11428 . . . . . . . 8 0 ≤ 1
9 icccldii 46100 . . . . . . . 8 ((0 ≤ 0 ∧ 0 ≤ 1) → (0[,]0) ∈ (Clsd‘II))
107, 8, 9mp2an 688 . . . . . . 7 (0[,]0) ∈ (Clsd‘II)
116, 10eqeltrri 2836 . . . . . 6 {0} ∈ (Clsd‘II)
12 cnclima 22327 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {0} ∈ (Clsd‘II)) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
133, 11, 12sylancl 585 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {0}) ∈ (Clsd‘𝐽))
142, 13eqeltrd 2839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑆 ∈ (Clsd‘𝐽))
15 simprr 769 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 = (𝑓 “ {1}))
16 1xr 10965 . . . . . . . 8 1 ∈ ℝ*
17 iccid 13053 . . . . . . . 8 (1 ∈ ℝ* → (1[,]1) = {1})
1816, 17ax-mp 5 . . . . . . 7 (1[,]1) = {1}
19 1le1 11533 . . . . . . . 8 1 ≤ 1
20 icccldii 46100 . . . . . . . 8 ((0 ≤ 1 ∧ 1 ≤ 1) → (1[,]1) ∈ (Clsd‘II))
218, 19, 20mp2an 688 . . . . . . 7 (1[,]1) ∈ (Clsd‘II)
2218, 21eqeltrri 2836 . . . . . 6 {1} ∈ (Clsd‘II)
23 cnclima 22327 . . . . . 6 ((𝑓 ∈ (𝐽 Cn II) ∧ {1} ∈ (Clsd‘II)) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
243, 22, 23sylancl 585 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑓 “ {1}) ∈ (Clsd‘𝐽))
2515, 24eqeltrd 2839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → 𝑇 ∈ (Clsd‘𝐽))
2614, 25jca 511 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1}))) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
2726rexlimiva 3209 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})) → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
281, 27syl 17 1 (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  {csn 4558   class class class wbr 5070  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  *cxr 10939  cle 10941  [,]cicc 13011  Clsdccld 22075   Cn ccn 22283  IIcii 23944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-cn 22286  df-ii 23946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator