Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepfsepc Structured version   Visualization version   GIF version

Theorem sepfsepc 46950
Description: If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
sepfsepc.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
Assertion
Ref Expression
sepfsepc (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑓,𝐽,𝑚,𝑛   𝑆,𝑓,𝑛   𝑇,𝑓,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛)   𝑆(𝑚)

Proof of Theorem sepfsepc
StepHypRef Expression
1 sepfsepc.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
2 simpl 483 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
3 0re 11157 . . . . . . . 8 0 ∈ ℝ
4 1re 11155 . . . . . . . 8 1 ∈ ℝ
5 0le0 12254 . . . . . . . 8 0 ≤ 0
6 3re 12233 . . . . . . . . . 10 3 ∈ ℝ
7 3ne0 12259 . . . . . . . . . 10 3 ≠ 0
86, 7rereccli 11920 . . . . . . . . 9 (1 / 3) ∈ ℝ
9 1lt3 12326 . . . . . . . . . . 11 1 < 3
10 recgt1i 12052 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
116, 9, 10mp2an 690 . . . . . . . . . 10 (0 < (1 / 3) ∧ (1 / 3) < 1)
1211simpri 486 . . . . . . . . 9 (1 / 3) < 1
138, 4, 12ltleii 11278 . . . . . . . 8 (1 / 3) ≤ 1
14 iccss 13332 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 3) ≤ 1)) → (0[,](1 / 3)) ⊆ (0[,]1))
153, 4, 5, 13, 14mp4an 691 . . . . . . 7 (0[,](1 / 3)) ⊆ (0[,]1)
16 i0oii 46942 . . . . . . . . 9 ((1 / 3) ≤ 1 → (0[,)(1 / 3)) ∈ II)
1713, 16ax-mp 5 . . . . . . . 8 (0[,)(1 / 3)) ∈ II
1811simpli 484 . . . . . . . . . 10 0 < (1 / 3)
198rexri 11213 . . . . . . . . . . . . 13 (1 / 3) ∈ ℝ*
20 elico2 13328 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / 3) ∈ ℝ*) → (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3))))
213, 19, 20mp2an 690 . . . . . . . . . . . 12 (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)))
2221biimpri 227 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → 0 ∈ (0[,)(1 / 3)))
2322snssd 4769 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → {0} ⊆ (0[,)(1 / 3)))
243, 5, 18, 23mp3an 1461 . . . . . . . . 9 {0} ⊆ (0[,)(1 / 3))
25 icossicc 13353 . . . . . . . . 9 (0[,)(1 / 3)) ⊆ (0[,](1 / 3))
2624, 25pm3.2i 471 . . . . . . . 8 ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))
27 sseq2 3970 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → ({0} ⊆ 𝑔 ↔ {0} ⊆ (0[,)(1 / 3))))
28 sseq1 3969 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → (𝑔 ⊆ (0[,](1 / 3)) ↔ (0[,)(1 / 3)) ⊆ (0[,](1 / 3))))
2927, 28anbi12d 631 . . . . . . . . 9 (𝑔 = (0[,)(1 / 3)) → (({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))) ↔ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))))
3029rspcev 3581 . . . . . . . 8 (((0[,)(1 / 3)) ∈ II ∧ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))) → ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))
3117, 26, 30mp2an 690 . . . . . . 7 𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))
32 iitop 24243 . . . . . . . 8 II ∈ Top
3324, 25sstri 3953 . . . . . . . . 9 {0} ⊆ (0[,](1 / 3))
3433, 15sstri 3953 . . . . . . . 8 {0} ⊆ (0[,]1)
35 iiuni 24244 . . . . . . . . 9 (0[,]1) = II
3635isnei 22454 . . . . . . . 8 ((II ∈ Top ∧ {0} ⊆ (0[,]1)) → ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))))
3732, 34, 36mp2an 690 . . . . . . 7 ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))))
3815, 31, 37mpbir2an 709 . . . . . 6 (0[,](1 / 3)) ∈ ((nei‘II)‘{0})
3938a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (0[,](1 / 3)) ∈ ((nei‘II)‘{0}))
40 simprl 769 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑆 ⊆ (𝑓 “ {0}))
412, 39, 40cnneiima 46939 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆))
42 halfge0 12370 . . . . . . . 8 0 ≤ (1 / 2)
43 1le1 11783 . . . . . . . 8 1 ≤ 1
44 iccss 13332 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
453, 4, 42, 43, 44mp4an 691 . . . . . . 7 ((1 / 2)[,]1) ⊆ (0[,]1)
46 io1ii 46943 . . . . . . . . 9 (0 ≤ (1 / 2) → ((1 / 2)(,]1) ∈ II)
4742, 46ax-mp 5 . . . . . . . 8 ((1 / 2)(,]1) ∈ II
48 halflt1 12371 . . . . . . . . . 10 (1 / 2) < 1
49 halfre 12367 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
5049rexri 11213 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ*
51 elioc2 13327 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1)))
5250, 4, 51mp2an 690 . . . . . . . . . . . 12 (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1))
5352biimpri 227 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → 1 ∈ ((1 / 2)(,]1))
5453snssd 4769 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → {1} ⊆ ((1 / 2)(,]1))
554, 48, 43, 54mp3an 1461 . . . . . . . . 9 {1} ⊆ ((1 / 2)(,]1)
56 iocssicc 13354 . . . . . . . . 9 ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)
5755, 56pm3.2i 471 . . . . . . . 8 ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))
58 sseq2 3970 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ({1} ⊆ ↔ {1} ⊆ ((1 / 2)(,]1)))
59 sseq1 3969 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ( ⊆ ((1 / 2)[,]1) ↔ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)))
6058, 59anbi12d 631 . . . . . . . . 9 ( = ((1 / 2)(,]1) → (({1} ⊆ ⊆ ((1 / 2)[,]1)) ↔ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))))
6160rspcev 3581 . . . . . . . 8 ((((1 / 2)(,]1) ∈ II ∧ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))) → ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))
6247, 57, 61mp2an 690 . . . . . . 7 ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))
6355, 56sstri 3953 . . . . . . . . 9 {1} ⊆ ((1 / 2)[,]1)
6463, 45sstri 3953 . . . . . . . 8 {1} ⊆ (0[,]1)
6535isnei 22454 . . . . . . . 8 ((II ∈ Top ∧ {1} ⊆ (0[,]1)) → (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))))
6632, 64, 65mp2an 690 . . . . . . 7 (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))))
6745, 62, 66mpbir2an 709 . . . . . 6 ((1 / 2)[,]1) ∈ ((nei‘II)‘{1})
6867a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((1 / 2)[,]1) ∈ ((nei‘II)‘{1}))
69 simprr 771 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑇 ⊆ (𝑓 “ {1}))
702, 68, 69cnneiima 46939 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇))
71 icccldii 46941 . . . . . 6 ((0 ≤ 0 ∧ (1 / 3) ≤ 1) → (0[,](1 / 3)) ∈ (Clsd‘II))
725, 13, 71mp2an 690 . . . . 5 (0[,](1 / 3)) ∈ (Clsd‘II)
73 cnclima 22619 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (0[,](1 / 3)) ∈ (Clsd‘II)) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
742, 72, 73sylancl 586 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
75 icccldii 46941 . . . . . 6 ((0 ≤ (1 / 2) ∧ 1 ≤ 1) → ((1 / 2)[,]1) ∈ (Clsd‘II))
7642, 43, 75mp2an 690 . . . . 5 ((1 / 2)[,]1) ∈ (Clsd‘II)
77 cnclima 22619 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ ((1 / 2)[,]1) ∈ (Clsd‘II)) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
782, 76, 77sylancl 586 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
79 eqid 2736 . . . . . . . 8 𝐽 = 𝐽
8079, 35cnf 22597 . . . . . . 7 (𝑓 ∈ (𝐽 Cn II) → 𝑓: 𝐽⟶(0[,]1))
8180ffund 6672 . . . . . 6 (𝑓 ∈ (𝐽 Cn II) → Fun 𝑓)
822, 81syl 17 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → Fun 𝑓)
83 0xr 11202 . . . . . . 7 0 ∈ ℝ*
84 1xr 11214 . . . . . . 7 1 ∈ ℝ*
85 2lt3 12325 . . . . . . . 8 2 < 3
86 2re 12227 . . . . . . . . 9 2 ∈ ℝ
87 2pos 12256 . . . . . . . . 9 0 < 2
88 3pos 12258 . . . . . . . . 9 0 < 3
8986, 6, 87, 88ltrecii 12071 . . . . . . . 8 (2 < 3 ↔ (1 / 3) < (1 / 2))
9085, 89mpbi 229 . . . . . . 7 (1 / 3) < (1 / 2)
91 iccdisj2 46920 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 3) < (1 / 2)) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
9283, 84, 90, 91mp3an 1461 . . . . . 6 ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅
9392a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
94 ssidd 3967 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ⊆ (𝑓 “ (0[,](1 / 3))))
95 ssidd 3967 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ⊆ (𝑓 “ ((1 / 2)[,]1)))
9682, 93, 94, 95predisj 46885 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)
97 eleq1 2825 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛 ∈ (Clsd‘𝐽) ↔ (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽)))
98 ineq1 4165 . . . . . . 7 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚))
9998eqeq1d 2738 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅))
10097, 993anbi13d 1438 . . . . 5 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅)))
101 eleq1 2825 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (𝑚 ∈ (Clsd‘𝐽) ↔ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽)))
102 ineq2 4166 . . . . . . 7 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))))
103102eqeq1d 2738 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅))
104101, 1033anbi23d 1439 . . . . 5 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)))
105100, 104rspc2ev 3592 . . . 4 (((𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇) ∧ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
10641, 70, 74, 78, 96, 105syl113anc 1382 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
107106rexlimiva 3144 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
1081, 107syl 17 1 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cin 3909  wss 3910  c0 4282  {csn 4586   cuni 4865   class class class wbr 5105  ccnv 5632  cima 5636  Fun wfun 6490  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  3c3 12209  (,]cioc 13265  [,)cico 13266  [,]cicc 13267  Topctop 22242  Clsdccld 22367  neicnei 22448   Cn ccn 22575  IIcii 24238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rest 17304  df-topgen 17325  df-ordt 17383  df-ps 18455  df-tsr 18456  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-nei 22449  df-cn 22578  df-ii 24240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator