Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepfsepc Structured version   Visualization version   GIF version

Theorem sepfsepc 48959
Description: If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
sepfsepc.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
Assertion
Ref Expression
sepfsepc (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑓,𝐽,𝑚,𝑛   𝑆,𝑓,𝑛   𝑇,𝑓,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛)   𝑆(𝑚)

Proof of Theorem sepfsepc
StepHypRef Expression
1 sepfsepc.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
2 simpl 482 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
3 0re 11109 . . . . . . . 8 0 ∈ ℝ
4 1re 11107 . . . . . . . 8 1 ∈ ℝ
5 0le0 12221 . . . . . . . 8 0 ≤ 0
6 3re 12200 . . . . . . . . . 10 3 ∈ ℝ
7 3ne0 12226 . . . . . . . . . 10 3 ≠ 0
86, 7rereccli 11881 . . . . . . . . 9 (1 / 3) ∈ ℝ
9 1lt3 12288 . . . . . . . . . . 11 1 < 3
10 recgt1i 12014 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
116, 9, 10mp2an 692 . . . . . . . . . 10 (0 < (1 / 3) ∧ (1 / 3) < 1)
1211simpri 485 . . . . . . . . 9 (1 / 3) < 1
138, 4, 12ltleii 11231 . . . . . . . 8 (1 / 3) ≤ 1
14 iccss 13309 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 3) ≤ 1)) → (0[,](1 / 3)) ⊆ (0[,]1))
153, 4, 5, 13, 14mp4an 693 . . . . . . 7 (0[,](1 / 3)) ⊆ (0[,]1)
16 i0oii 48951 . . . . . . . . 9 ((1 / 3) ≤ 1 → (0[,)(1 / 3)) ∈ II)
1713, 16ax-mp 5 . . . . . . . 8 (0[,)(1 / 3)) ∈ II
1811simpli 483 . . . . . . . . . 10 0 < (1 / 3)
198rexri 11165 . . . . . . . . . . . . 13 (1 / 3) ∈ ℝ*
20 elico2 13305 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / 3) ∈ ℝ*) → (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3))))
213, 19, 20mp2an 692 . . . . . . . . . . . 12 (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)))
2221biimpri 228 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → 0 ∈ (0[,)(1 / 3)))
2322snssd 4756 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → {0} ⊆ (0[,)(1 / 3)))
243, 5, 18, 23mp3an 1463 . . . . . . . . 9 {0} ⊆ (0[,)(1 / 3))
25 icossicc 13331 . . . . . . . . 9 (0[,)(1 / 3)) ⊆ (0[,](1 / 3))
2624, 25pm3.2i 470 . . . . . . . 8 ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))
27 sseq2 3956 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → ({0} ⊆ 𝑔 ↔ {0} ⊆ (0[,)(1 / 3))))
28 sseq1 3955 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → (𝑔 ⊆ (0[,](1 / 3)) ↔ (0[,)(1 / 3)) ⊆ (0[,](1 / 3))))
2927, 28anbi12d 632 . . . . . . . . 9 (𝑔 = (0[,)(1 / 3)) → (({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))) ↔ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))))
3029rspcev 3572 . . . . . . . 8 (((0[,)(1 / 3)) ∈ II ∧ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))) → ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))
3117, 26, 30mp2an 692 . . . . . . 7 𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))
32 iitop 24795 . . . . . . . 8 II ∈ Top
3324, 25sstri 3939 . . . . . . . . 9 {0} ⊆ (0[,](1 / 3))
3433, 15sstri 3939 . . . . . . . 8 {0} ⊆ (0[,]1)
35 iiuni 24796 . . . . . . . . 9 (0[,]1) = II
3635isnei 23013 . . . . . . . 8 ((II ∈ Top ∧ {0} ⊆ (0[,]1)) → ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))))
3732, 34, 36mp2an 692 . . . . . . 7 ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))))
3815, 31, 37mpbir2an 711 . . . . . 6 (0[,](1 / 3)) ∈ ((nei‘II)‘{0})
3938a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (0[,](1 / 3)) ∈ ((nei‘II)‘{0}))
40 simprl 770 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑆 ⊆ (𝑓 “ {0}))
412, 39, 40cnneiima 48948 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆))
42 halfge0 12332 . . . . . . . 8 0 ≤ (1 / 2)
43 1le1 11740 . . . . . . . 8 1 ≤ 1
44 iccss 13309 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
453, 4, 42, 43, 44mp4an 693 . . . . . . 7 ((1 / 2)[,]1) ⊆ (0[,]1)
46 io1ii 48952 . . . . . . . . 9 (0 ≤ (1 / 2) → ((1 / 2)(,]1) ∈ II)
4742, 46ax-mp 5 . . . . . . . 8 ((1 / 2)(,]1) ∈ II
48 halflt1 12333 . . . . . . . . . 10 (1 / 2) < 1
49 halfre 12329 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
5049rexri 11165 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ*
51 elioc2 13304 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1)))
5250, 4, 51mp2an 692 . . . . . . . . . . . 12 (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1))
5352biimpri 228 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → 1 ∈ ((1 / 2)(,]1))
5453snssd 4756 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → {1} ⊆ ((1 / 2)(,]1))
554, 48, 43, 54mp3an 1463 . . . . . . . . 9 {1} ⊆ ((1 / 2)(,]1)
56 iocssicc 13332 . . . . . . . . 9 ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)
5755, 56pm3.2i 470 . . . . . . . 8 ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))
58 sseq2 3956 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ({1} ⊆ ↔ {1} ⊆ ((1 / 2)(,]1)))
59 sseq1 3955 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ( ⊆ ((1 / 2)[,]1) ↔ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)))
6058, 59anbi12d 632 . . . . . . . . 9 ( = ((1 / 2)(,]1) → (({1} ⊆ ⊆ ((1 / 2)[,]1)) ↔ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))))
6160rspcev 3572 . . . . . . . 8 ((((1 / 2)(,]1) ∈ II ∧ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))) → ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))
6247, 57, 61mp2an 692 . . . . . . 7 ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))
6355, 56sstri 3939 . . . . . . . . 9 {1} ⊆ ((1 / 2)[,]1)
6463, 45sstri 3939 . . . . . . . 8 {1} ⊆ (0[,]1)
6535isnei 23013 . . . . . . . 8 ((II ∈ Top ∧ {1} ⊆ (0[,]1)) → (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))))
6632, 64, 65mp2an 692 . . . . . . 7 (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))))
6745, 62, 66mpbir2an 711 . . . . . 6 ((1 / 2)[,]1) ∈ ((nei‘II)‘{1})
6867a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((1 / 2)[,]1) ∈ ((nei‘II)‘{1}))
69 simprr 772 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑇 ⊆ (𝑓 “ {1}))
702, 68, 69cnneiima 48948 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇))
71 icccldii 48950 . . . . . 6 ((0 ≤ 0 ∧ (1 / 3) ≤ 1) → (0[,](1 / 3)) ∈ (Clsd‘II))
725, 13, 71mp2an 692 . . . . 5 (0[,](1 / 3)) ∈ (Clsd‘II)
73 cnclima 23178 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (0[,](1 / 3)) ∈ (Clsd‘II)) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
742, 72, 73sylancl 586 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
75 icccldii 48950 . . . . . 6 ((0 ≤ (1 / 2) ∧ 1 ≤ 1) → ((1 / 2)[,]1) ∈ (Clsd‘II))
7642, 43, 75mp2an 692 . . . . 5 ((1 / 2)[,]1) ∈ (Clsd‘II)
77 cnclima 23178 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ ((1 / 2)[,]1) ∈ (Clsd‘II)) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
782, 76, 77sylancl 586 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
79 eqid 2731 . . . . . . . 8 𝐽 = 𝐽
8079, 35cnf 23156 . . . . . . 7 (𝑓 ∈ (𝐽 Cn II) → 𝑓: 𝐽⟶(0[,]1))
8180ffund 6650 . . . . . 6 (𝑓 ∈ (𝐽 Cn II) → Fun 𝑓)
822, 81syl 17 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → Fun 𝑓)
83 0xr 11154 . . . . . . 7 0 ∈ ℝ*
84 1xr 11166 . . . . . . 7 1 ∈ ℝ*
85 2lt3 12287 . . . . . . . 8 2 < 3
86 2re 12194 . . . . . . . . 9 2 ∈ ℝ
87 2pos 12223 . . . . . . . . 9 0 < 2
88 3pos 12225 . . . . . . . . 9 0 < 3
8986, 6, 87, 88ltrecii 12033 . . . . . . . 8 (2 < 3 ↔ (1 / 3) < (1 / 2))
9085, 89mpbi 230 . . . . . . 7 (1 / 3) < (1 / 2)
91 iccdisj2 48928 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 3) < (1 / 2)) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
9283, 84, 90, 91mp3an 1463 . . . . . 6 ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅
9392a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
94 ssidd 3953 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ⊆ (𝑓 “ (0[,](1 / 3))))
95 ssidd 3953 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ⊆ (𝑓 “ ((1 / 2)[,]1)))
9682, 93, 94, 95predisj 48842 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)
97 eleq1 2819 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛 ∈ (Clsd‘𝐽) ↔ (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽)))
98 ineq1 4158 . . . . . . 7 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚))
9998eqeq1d 2733 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅))
10097, 993anbi13d 1440 . . . . 5 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅)))
101 eleq1 2819 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (𝑚 ∈ (Clsd‘𝐽) ↔ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽)))
102 ineq2 4159 . . . . . . 7 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))))
103102eqeq1d 2733 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅))
104101, 1033anbi23d 1441 . . . . 5 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)))
105100, 104rspc2ev 3585 . . . 4 (((𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇) ∧ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
10641, 70, 74, 78, 96, 105syl113anc 1384 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
107106rexlimiva 3125 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
1081, 107syl 17 1 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cin 3896  wss 3897  c0 4278  {csn 4571   cuni 4854   class class class wbr 5086  ccnv 5610  cima 5614  Fun wfun 6470  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002  *cxr 11140   < clt 11141  cle 11142   / cdiv 11769  2c2 12175  3c3 12176  (,]cioc 13241  [,)cico 13242  [,]cicc 13243  Topctop 22803  Clsdccld 22926  neicnei 23007   Cn ccn 23134  IIcii 24790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-rest 17321  df-topgen 17342  df-ordt 17400  df-ps 18467  df-tsr 18468  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856  df-cld 22929  df-ntr 22930  df-nei 23008  df-cn 23137  df-ii 24792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator