Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepfsepc Structured version   Visualization version   GIF version

Theorem sepfsepc 48607
Description: If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
sepfsepc.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
Assertion
Ref Expression
sepfsepc (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑓,𝐽,𝑚,𝑛   𝑆,𝑓,𝑛   𝑇,𝑓,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛)   𝑆(𝑚)

Proof of Theorem sepfsepc
StepHypRef Expression
1 sepfsepc.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
2 simpl 482 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
3 0re 11292 . . . . . . . 8 0 ∈ ℝ
4 1re 11290 . . . . . . . 8 1 ∈ ℝ
5 0le0 12394 . . . . . . . 8 0 ≤ 0
6 3re 12373 . . . . . . . . . 10 3 ∈ ℝ
7 3ne0 12399 . . . . . . . . . 10 3 ≠ 0
86, 7rereccli 12059 . . . . . . . . 9 (1 / 3) ∈ ℝ
9 1lt3 12466 . . . . . . . . . . 11 1 < 3
10 recgt1i 12192 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
116, 9, 10mp2an 691 . . . . . . . . . 10 (0 < (1 / 3) ∧ (1 / 3) < 1)
1211simpri 485 . . . . . . . . 9 (1 / 3) < 1
138, 4, 12ltleii 11413 . . . . . . . 8 (1 / 3) ≤ 1
14 iccss 13475 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 3) ≤ 1)) → (0[,](1 / 3)) ⊆ (0[,]1))
153, 4, 5, 13, 14mp4an 692 . . . . . . 7 (0[,](1 / 3)) ⊆ (0[,]1)
16 i0oii 48599 . . . . . . . . 9 ((1 / 3) ≤ 1 → (0[,)(1 / 3)) ∈ II)
1713, 16ax-mp 5 . . . . . . . 8 (0[,)(1 / 3)) ∈ II
1811simpli 483 . . . . . . . . . 10 0 < (1 / 3)
198rexri 11348 . . . . . . . . . . . . 13 (1 / 3) ∈ ℝ*
20 elico2 13471 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / 3) ∈ ℝ*) → (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3))))
213, 19, 20mp2an 691 . . . . . . . . . . . 12 (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)))
2221biimpri 228 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → 0 ∈ (0[,)(1 / 3)))
2322snssd 4834 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → {0} ⊆ (0[,)(1 / 3)))
243, 5, 18, 23mp3an 1461 . . . . . . . . 9 {0} ⊆ (0[,)(1 / 3))
25 icossicc 13496 . . . . . . . . 9 (0[,)(1 / 3)) ⊆ (0[,](1 / 3))
2624, 25pm3.2i 470 . . . . . . . 8 ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))
27 sseq2 4035 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → ({0} ⊆ 𝑔 ↔ {0} ⊆ (0[,)(1 / 3))))
28 sseq1 4034 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → (𝑔 ⊆ (0[,](1 / 3)) ↔ (0[,)(1 / 3)) ⊆ (0[,](1 / 3))))
2927, 28anbi12d 631 . . . . . . . . 9 (𝑔 = (0[,)(1 / 3)) → (({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))) ↔ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))))
3029rspcev 3635 . . . . . . . 8 (((0[,)(1 / 3)) ∈ II ∧ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))) → ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))
3117, 26, 30mp2an 691 . . . . . . 7 𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))
32 iitop 24925 . . . . . . . 8 II ∈ Top
3324, 25sstri 4018 . . . . . . . . 9 {0} ⊆ (0[,](1 / 3))
3433, 15sstri 4018 . . . . . . . 8 {0} ⊆ (0[,]1)
35 iiuni 24926 . . . . . . . . 9 (0[,]1) = II
3635isnei 23132 . . . . . . . 8 ((II ∈ Top ∧ {0} ⊆ (0[,]1)) → ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))))
3732, 34, 36mp2an 691 . . . . . . 7 ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))))
3815, 31, 37mpbir2an 710 . . . . . 6 (0[,](1 / 3)) ∈ ((nei‘II)‘{0})
3938a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (0[,](1 / 3)) ∈ ((nei‘II)‘{0}))
40 simprl 770 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑆 ⊆ (𝑓 “ {0}))
412, 39, 40cnneiima 48596 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆))
42 halfge0 12510 . . . . . . . 8 0 ≤ (1 / 2)
43 1le1 11918 . . . . . . . 8 1 ≤ 1
44 iccss 13475 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
453, 4, 42, 43, 44mp4an 692 . . . . . . 7 ((1 / 2)[,]1) ⊆ (0[,]1)
46 io1ii 48600 . . . . . . . . 9 (0 ≤ (1 / 2) → ((1 / 2)(,]1) ∈ II)
4742, 46ax-mp 5 . . . . . . . 8 ((1 / 2)(,]1) ∈ II
48 halflt1 12511 . . . . . . . . . 10 (1 / 2) < 1
49 halfre 12507 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
5049rexri 11348 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ*
51 elioc2 13470 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1)))
5250, 4, 51mp2an 691 . . . . . . . . . . . 12 (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1))
5352biimpri 228 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → 1 ∈ ((1 / 2)(,]1))
5453snssd 4834 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → {1} ⊆ ((1 / 2)(,]1))
554, 48, 43, 54mp3an 1461 . . . . . . . . 9 {1} ⊆ ((1 / 2)(,]1)
56 iocssicc 13497 . . . . . . . . 9 ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)
5755, 56pm3.2i 470 . . . . . . . 8 ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))
58 sseq2 4035 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ({1} ⊆ ↔ {1} ⊆ ((1 / 2)(,]1)))
59 sseq1 4034 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ( ⊆ ((1 / 2)[,]1) ↔ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)))
6058, 59anbi12d 631 . . . . . . . . 9 ( = ((1 / 2)(,]1) → (({1} ⊆ ⊆ ((1 / 2)[,]1)) ↔ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))))
6160rspcev 3635 . . . . . . . 8 ((((1 / 2)(,]1) ∈ II ∧ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))) → ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))
6247, 57, 61mp2an 691 . . . . . . 7 ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))
6355, 56sstri 4018 . . . . . . . . 9 {1} ⊆ ((1 / 2)[,]1)
6463, 45sstri 4018 . . . . . . . 8 {1} ⊆ (0[,]1)
6535isnei 23132 . . . . . . . 8 ((II ∈ Top ∧ {1} ⊆ (0[,]1)) → (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))))
6632, 64, 65mp2an 691 . . . . . . 7 (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))))
6745, 62, 66mpbir2an 710 . . . . . 6 ((1 / 2)[,]1) ∈ ((nei‘II)‘{1})
6867a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((1 / 2)[,]1) ∈ ((nei‘II)‘{1}))
69 simprr 772 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑇 ⊆ (𝑓 “ {1}))
702, 68, 69cnneiima 48596 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇))
71 icccldii 48598 . . . . . 6 ((0 ≤ 0 ∧ (1 / 3) ≤ 1) → (0[,](1 / 3)) ∈ (Clsd‘II))
725, 13, 71mp2an 691 . . . . 5 (0[,](1 / 3)) ∈ (Clsd‘II)
73 cnclima 23297 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (0[,](1 / 3)) ∈ (Clsd‘II)) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
742, 72, 73sylancl 585 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
75 icccldii 48598 . . . . . 6 ((0 ≤ (1 / 2) ∧ 1 ≤ 1) → ((1 / 2)[,]1) ∈ (Clsd‘II))
7642, 43, 75mp2an 691 . . . . 5 ((1 / 2)[,]1) ∈ (Clsd‘II)
77 cnclima 23297 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ ((1 / 2)[,]1) ∈ (Clsd‘II)) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
782, 76, 77sylancl 585 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
79 eqid 2740 . . . . . . . 8 𝐽 = 𝐽
8079, 35cnf 23275 . . . . . . 7 (𝑓 ∈ (𝐽 Cn II) → 𝑓: 𝐽⟶(0[,]1))
8180ffund 6751 . . . . . 6 (𝑓 ∈ (𝐽 Cn II) → Fun 𝑓)
822, 81syl 17 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → Fun 𝑓)
83 0xr 11337 . . . . . . 7 0 ∈ ℝ*
84 1xr 11349 . . . . . . 7 1 ∈ ℝ*
85 2lt3 12465 . . . . . . . 8 2 < 3
86 2re 12367 . . . . . . . . 9 2 ∈ ℝ
87 2pos 12396 . . . . . . . . 9 0 < 2
88 3pos 12398 . . . . . . . . 9 0 < 3
8986, 6, 87, 88ltrecii 12211 . . . . . . . 8 (2 < 3 ↔ (1 / 3) < (1 / 2))
9085, 89mpbi 230 . . . . . . 7 (1 / 3) < (1 / 2)
91 iccdisj2 48577 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 3) < (1 / 2)) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
9283, 84, 90, 91mp3an 1461 . . . . . 6 ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅
9392a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
94 ssidd 4032 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ⊆ (𝑓 “ (0[,](1 / 3))))
95 ssidd 4032 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ⊆ (𝑓 “ ((1 / 2)[,]1)))
9682, 93, 94, 95predisj 48542 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)
97 eleq1 2832 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛 ∈ (Clsd‘𝐽) ↔ (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽)))
98 ineq1 4234 . . . . . . 7 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚))
9998eqeq1d 2742 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅))
10097, 993anbi13d 1438 . . . . 5 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅)))
101 eleq1 2832 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (𝑚 ∈ (Clsd‘𝐽) ↔ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽)))
102 ineq2 4235 . . . . . . 7 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))))
103102eqeq1d 2742 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅))
104101, 1033anbi23d 1439 . . . . 5 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)))
105100, 104rspc2ev 3648 . . . 4 (((𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇) ∧ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
10641, 70, 74, 78, 96, 105syl113anc 1382 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
107106rexlimiva 3153 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
1081, 107syl 17 1 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  c0 4352  {csn 4648   cuni 4931   class class class wbr 5166  ccnv 5699  cima 5703  Fun wfun 6567  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  3c3 12349  (,]cioc 13408  [,)cico 13409  [,]cicc 13410  Topctop 22920  Clsdccld 23045  neicnei 23126   Cn ccn 23253  IIcii 24920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rest 17482  df-topgen 17503  df-ordt 17561  df-ps 18636  df-tsr 18637  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-nei 23127  df-cn 23256  df-ii 24922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator