Proof of Theorem sepfsepc
Step | Hyp | Ref
| Expression |
1 | | sepfsepc.1 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) |
2 | | simpl 482 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II)) |
3 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
4 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
5 | | 0le0 12004 |
. . . . . . . 8
⊢ 0 ≤
0 |
6 | | 3re 11983 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
7 | | 3ne0 12009 |
. . . . . . . . . 10
⊢ 3 ≠
0 |
8 | 6, 7 | rereccli 11670 |
. . . . . . . . 9
⊢ (1 / 3)
∈ ℝ |
9 | | 1lt3 12076 |
. . . . . . . . . . 11
⊢ 1 <
3 |
10 | | recgt1i 11802 |
. . . . . . . . . . 11
⊢ ((3
∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) <
1)) |
11 | 6, 9, 10 | mp2an 688 |
. . . . . . . . . 10
⊢ (0 <
(1 / 3) ∧ (1 / 3) < 1) |
12 | 11 | simpri 485 |
. . . . . . . . 9
⊢ (1 / 3)
< 1 |
13 | 8, 4, 12 | ltleii 11028 |
. . . . . . . 8
⊢ (1 / 3)
≤ 1 |
14 | | iccss 13076 |
. . . . . . . 8
⊢ (((0
∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 3) ≤ 1))
→ (0[,](1 / 3)) ⊆ (0[,]1)) |
15 | 3, 4, 5, 13, 14 | mp4an 689 |
. . . . . . 7
⊢ (0[,](1 /
3)) ⊆ (0[,]1) |
16 | | i0oii 46101 |
. . . . . . . . 9
⊢ ((1 / 3)
≤ 1 → (0[,)(1 / 3)) ∈ II) |
17 | 13, 16 | ax-mp 5 |
. . . . . . . 8
⊢ (0[,)(1 /
3)) ∈ II |
18 | 11 | simpli 483 |
. . . . . . . . . 10
⊢ 0 < (1
/ 3) |
19 | 8 | rexri 10964 |
. . . . . . . . . . . . 13
⊢ (1 / 3)
∈ ℝ* |
20 | | elico2 13072 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ (1 / 3) ∈ ℝ*) → (0 ∈
(0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 /
3)))) |
21 | 3, 19, 20 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (0 ∈
(0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 /
3))) |
22 | 21 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → 0 ∈ (0[,)(1 /
3))) |
23 | 22 | snssd 4739 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → {0} ⊆ (0[,)(1
/ 3))) |
24 | 3, 5, 18, 23 | mp3an 1459 |
. . . . . . . . 9
⊢ {0}
⊆ (0[,)(1 / 3)) |
25 | | icossicc 13097 |
. . . . . . . . 9
⊢ (0[,)(1 /
3)) ⊆ (0[,](1 / 3)) |
26 | 24, 25 | pm3.2i 470 |
. . . . . . . 8
⊢ ({0}
⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 /
3))) |
27 | | sseq2 3943 |
. . . . . . . . . 10
⊢ (𝑔 = (0[,)(1 / 3)) → ({0}
⊆ 𝑔 ↔ {0}
⊆ (0[,)(1 / 3)))) |
28 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (𝑔 = (0[,)(1 / 3)) → (𝑔 ⊆ (0[,](1 / 3)) ↔
(0[,)(1 / 3)) ⊆ (0[,](1 / 3)))) |
29 | 27, 28 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑔 = (0[,)(1 / 3)) → (({0}
⊆ 𝑔 ∧ 𝑔 ⊆ (0[,](1 / 3))) ↔
({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 /
3))))) |
30 | 29 | rspcev 3552 |
. . . . . . . 8
⊢ (((0[,)(1
/ 3)) ∈ II ∧ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆
(0[,](1 / 3)))) → ∃𝑔 ∈ II ({0} ⊆ 𝑔 ∧ 𝑔 ⊆ (0[,](1 / 3)))) |
31 | 17, 26, 30 | mp2an 688 |
. . . . . . 7
⊢
∃𝑔 ∈ II
({0} ⊆ 𝑔 ∧ 𝑔 ⊆ (0[,](1 /
3))) |
32 | | iitop 23949 |
. . . . . . . 8
⊢ II ∈
Top |
33 | 24, 25 | sstri 3926 |
. . . . . . . . 9
⊢ {0}
⊆ (0[,](1 / 3)) |
34 | 33, 15 | sstri 3926 |
. . . . . . . 8
⊢ {0}
⊆ (0[,]1) |
35 | | iiuni 23950 |
. . . . . . . . 9
⊢ (0[,]1) =
∪ II |
36 | 35 | isnei 22162 |
. . . . . . . 8
⊢ ((II
∈ Top ∧ {0} ⊆ (0[,]1)) → ((0[,](1 / 3)) ∈
((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧
∃𝑔 ∈ II ({0}
⊆ 𝑔 ∧ 𝑔 ⊆ (0[,](1 /
3)))))) |
37 | 32, 34, 36 | mp2an 688 |
. . . . . . 7
⊢ ((0[,](1
/ 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1)
∧ ∃𝑔 ∈ II
({0} ⊆ 𝑔 ∧ 𝑔 ⊆ (0[,](1 /
3))))) |
38 | 15, 31, 37 | mpbir2an 707 |
. . . . . 6
⊢ (0[,](1 /
3)) ∈ ((nei‘II)‘{0}) |
39 | 38 | a1i 11 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (0[,](1 / 3)) ∈
((nei‘II)‘{0})) |
40 | | simprl 767 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → 𝑆 ⊆ (◡𝑓 “ {0})) |
41 | 2, 39, 40 | cnneiima 46098 |
. . . 4
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (◡𝑓 “ (0[,](1 / 3))) ∈
((nei‘𝐽)‘𝑆)) |
42 | | halfge0 12120 |
. . . . . . . 8
⊢ 0 ≤ (1
/ 2) |
43 | | 1le1 11533 |
. . . . . . . 8
⊢ 1 ≤
1 |
44 | | iccss 13076 |
. . . . . . . 8
⊢ (((0
∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1))
→ ((1 / 2)[,]1) ⊆ (0[,]1)) |
45 | 3, 4, 42, 43, 44 | mp4an 689 |
. . . . . . 7
⊢ ((1 /
2)[,]1) ⊆ (0[,]1) |
46 | | io1ii 46102 |
. . . . . . . . 9
⊢ (0 ≤
(1 / 2) → ((1 / 2)(,]1) ∈ II) |
47 | 42, 46 | ax-mp 5 |
. . . . . . . 8
⊢ ((1 /
2)(,]1) ∈ II |
48 | | halflt1 12121 |
. . . . . . . . . 10
⊢ (1 / 2)
< 1 |
49 | | halfre 12117 |
. . . . . . . . . . . . . 14
⊢ (1 / 2)
∈ ℝ |
50 | 49 | rexri 10964 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ* |
51 | | elioc2 13071 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ ((1 /
2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤
1))) |
52 | 50, 4, 51 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (1 ∈
((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤
1)) |
53 | 52 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → 1 ∈ ((1 /
2)(,]1)) |
54 | 53 | snssd 4739 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → {1} ⊆ ((1 /
2)(,]1)) |
55 | 4, 48, 43, 54 | mp3an 1459 |
. . . . . . . . 9
⊢ {1}
⊆ ((1 / 2)(,]1) |
56 | | iocssicc 13098 |
. . . . . . . . 9
⊢ ((1 /
2)(,]1) ⊆ ((1 / 2)[,]1) |
57 | 55, 56 | pm3.2i 470 |
. . . . . . . 8
⊢ ({1}
⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 /
2)[,]1)) |
58 | | sseq2 3943 |
. . . . . . . . . 10
⊢ (ℎ = ((1 / 2)(,]1) → ({1}
⊆ ℎ ↔ {1} ⊆
((1 / 2)(,]1))) |
59 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (ℎ = ((1 / 2)(,]1) → (ℎ ⊆ ((1 / 2)[,]1) ↔ ((1
/ 2)(,]1) ⊆ ((1 / 2)[,]1))) |
60 | 58, 59 | anbi12d 630 |
. . . . . . . . 9
⊢ (ℎ = ((1 / 2)(,]1) → (({1}
⊆ ℎ ∧ ℎ ⊆ ((1 / 2)[,]1)) ↔
({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 /
2)[,]1)))) |
61 | 60 | rspcev 3552 |
. . . . . . . 8
⊢ ((((1 /
2)(,]1) ∈ II ∧ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆
((1 / 2)[,]1))) → ∃ℎ ∈ II ({1} ⊆ ℎ ∧ ℎ ⊆ ((1 / 2)[,]1))) |
62 | 47, 57, 61 | mp2an 688 |
. . . . . . 7
⊢
∃ℎ ∈ II
({1} ⊆ ℎ ∧ ℎ ⊆ ((1 /
2)[,]1)) |
63 | 55, 56 | sstri 3926 |
. . . . . . . . 9
⊢ {1}
⊆ ((1 / 2)[,]1) |
64 | 63, 45 | sstri 3926 |
. . . . . . . 8
⊢ {1}
⊆ (0[,]1) |
65 | 35 | isnei 22162 |
. . . . . . . 8
⊢ ((II
∈ Top ∧ {1} ⊆ (0[,]1)) → (((1 / 2)[,]1) ∈
((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧
∃ℎ ∈ II ({1}
⊆ ℎ ∧ ℎ ⊆ ((1 /
2)[,]1))))) |
66 | 32, 64, 65 | mp2an 688 |
. . . . . . 7
⊢ (((1 /
2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1)
∧ ∃ℎ ∈ II
({1} ⊆ ℎ ∧ ℎ ⊆ ((1 /
2)[,]1)))) |
67 | 45, 62, 66 | mpbir2an 707 |
. . . . . 6
⊢ ((1 /
2)[,]1) ∈ ((nei‘II)‘{1}) |
68 | 67 | a1i 11 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → ((1 / 2)[,]1) ∈
((nei‘II)‘{1})) |
69 | | simprr 769 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → 𝑇 ⊆ (◡𝑓 “ {1})) |
70 | 2, 68, 69 | cnneiima 46098 |
. . . 4
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (◡𝑓 “ ((1 / 2)[,]1)) ∈
((nei‘𝐽)‘𝑇)) |
71 | | icccldii 46100 |
. . . . . 6
⊢ ((0 ≤
0 ∧ (1 / 3) ≤ 1) → (0[,](1 / 3)) ∈
(Clsd‘II)) |
72 | 5, 13, 71 | mp2an 688 |
. . . . 5
⊢ (0[,](1 /
3)) ∈ (Clsd‘II) |
73 | | cnclima 22327 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (0[,](1 / 3)) ∈
(Clsd‘II)) → (◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽)) |
74 | 2, 72, 73 | sylancl 585 |
. . . 4
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽)) |
75 | | icccldii 46100 |
. . . . . 6
⊢ ((0 ≤
(1 / 2) ∧ 1 ≤ 1) → ((1 / 2)[,]1) ∈
(Clsd‘II)) |
76 | 42, 43, 75 | mp2an 688 |
. . . . 5
⊢ ((1 /
2)[,]1) ∈ (Clsd‘II) |
77 | | cnclima 22327 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ ((1 / 2)[,]1) ∈
(Clsd‘II)) → (◡𝑓 “ ((1 / 2)[,]1)) ∈
(Clsd‘𝐽)) |
78 | 2, 76, 77 | sylancl 585 |
. . . 4
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (◡𝑓 “ ((1 / 2)[,]1)) ∈
(Clsd‘𝐽)) |
79 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
80 | 79, 35 | cnf 22305 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐽 Cn II) → 𝑓:∪ 𝐽⟶(0[,]1)) |
81 | 80 | ffund 6588 |
. . . . . 6
⊢ (𝑓 ∈ (𝐽 Cn II) → Fun 𝑓) |
82 | 2, 81 | syl 17 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → Fun 𝑓) |
83 | | 0xr 10953 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
84 | | 1xr 10965 |
. . . . . . 7
⊢ 1 ∈
ℝ* |
85 | | 2lt3 12075 |
. . . . . . . 8
⊢ 2 <
3 |
86 | | 2re 11977 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
87 | | 2pos 12006 |
. . . . . . . . 9
⊢ 0 <
2 |
88 | | 3pos 12008 |
. . . . . . . . 9
⊢ 0 <
3 |
89 | 86, 6, 87, 88 | ltrecii 11821 |
. . . . . . . 8
⊢ (2 < 3
↔ (1 / 3) < (1 / 2)) |
90 | 85, 89 | mpbi 229 |
. . . . . . 7
⊢ (1 / 3)
< (1 / 2) |
91 | | iccdisj2 46079 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 3)
< (1 / 2)) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) =
∅) |
92 | 83, 84, 90, 91 | mp3an 1459 |
. . . . . 6
⊢ ((0[,](1
/ 3)) ∩ ((1 / 2)[,]1)) = ∅ |
93 | 92 | a1i 11 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → ((0[,](1 / 3)) ∩
((1 / 2)[,]1)) = ∅) |
94 | | ssidd 3940 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (◡𝑓 “ (0[,](1 / 3))) ⊆ (◡𝑓 “ (0[,](1 / 3)))) |
95 | | ssidd 3940 |
. . . . 5
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → (◡𝑓 “ ((1 / 2)[,]1)) ⊆ (◡𝑓 “ ((1 / 2)[,]1))) |
96 | 82, 93, 94, 95 | predisj 46044 |
. . . 4
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → ((◡𝑓 “ (0[,](1 / 3))) ∩ (◡𝑓 “ ((1 / 2)[,]1))) =
∅) |
97 | | eleq1 2826 |
. . . . . 6
⊢ (𝑛 = (◡𝑓 “ (0[,](1 / 3))) → (𝑛 ∈ (Clsd‘𝐽) ↔ (◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽))) |
98 | | ineq1 4136 |
. . . . . . 7
⊢ (𝑛 = (◡𝑓 “ (0[,](1 / 3))) → (𝑛 ∩ 𝑚) = ((◡𝑓 “ (0[,](1 / 3))) ∩ 𝑚)) |
99 | 98 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑛 = (◡𝑓 “ (0[,](1 / 3))) → ((𝑛 ∩ 𝑚) = ∅ ↔ ((◡𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅)) |
100 | 97, 99 | 3anbi13d 1436 |
. . . . 5
⊢ (𝑛 = (◡𝑓 “ (0[,](1 / 3))) → ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ((◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((◡𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅))) |
101 | | eleq1 2826 |
. . . . . 6
⊢ (𝑚 = (◡𝑓 “ ((1 / 2)[,]1)) → (𝑚 ∈ (Clsd‘𝐽) ↔ (◡𝑓 “ ((1 / 2)[,]1)) ∈
(Clsd‘𝐽))) |
102 | | ineq2 4137 |
. . . . . . 7
⊢ (𝑚 = (◡𝑓 “ ((1 / 2)[,]1)) → ((◡𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ((◡𝑓 “ (0[,](1 / 3))) ∩ (◡𝑓 “ ((1 / 2)[,]1)))) |
103 | 102 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑚 = (◡𝑓 “ ((1 / 2)[,]1)) → (((◡𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅ ↔ ((◡𝑓 “ (0[,](1 / 3))) ∩ (◡𝑓 “ ((1 / 2)[,]1))) =
∅)) |
104 | 101, 103 | 3anbi23d 1437 |
. . . . 5
⊢ (𝑚 = (◡𝑓 “ ((1 / 2)[,]1)) → (((◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((◡𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅) ↔ ((◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽) ∧ (◡𝑓 “ ((1 / 2)[,]1)) ∈
(Clsd‘𝐽) ∧
((◡𝑓 “ (0[,](1 / 3))) ∩ (◡𝑓 “ ((1 / 2)[,]1))) =
∅))) |
105 | 100, 104 | rspc2ev 3564 |
. . . 4
⊢ (((◡𝑓 “ (0[,](1 / 3))) ∈
((nei‘𝐽)‘𝑆) ∧ (◡𝑓 “ ((1 / 2)[,]1)) ∈
((nei‘𝐽)‘𝑇) ∧ ((◡𝑓 “ (0[,](1 / 3))) ∈
(Clsd‘𝐽) ∧ (◡𝑓 “ ((1 / 2)[,]1)) ∈
(Clsd‘𝐽) ∧
((◡𝑓 “ (0[,](1 / 3))) ∩ (◡𝑓 “ ((1 / 2)[,]1))) = ∅)) →
∃𝑛 ∈
((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) |
106 | 41, 70, 74, 78, 96, 105 | syl113anc 1380 |
. . 3
⊢ ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) |
107 | 106 | rexlimiva 3209 |
. 2
⊢
(∃𝑓 ∈
(𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1})) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) |
108 | 1, 107 | syl 17 |
1
⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) |