Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepfsepc Structured version   Visualization version   GIF version

Theorem sepfsepc 45660
Description: If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
sepfsepc.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
Assertion
Ref Expression
sepfsepc (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑓,𝐽,𝑚,𝑛   𝑆,𝑓,𝑛   𝑇,𝑓,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛)   𝑆(𝑚)

Proof of Theorem sepfsepc
StepHypRef Expression
1 sepfsepc.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
2 simpl 486 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
3 0re 10694 . . . . . . . 8 0 ∈ ℝ
4 1re 10692 . . . . . . . 8 1 ∈ ℝ
5 0le0 11788 . . . . . . . 8 0 ≤ 0
6 3re 11767 . . . . . . . . . 10 3 ∈ ℝ
7 3ne0 11793 . . . . . . . . . 10 3 ≠ 0
86, 7rereccli 11456 . . . . . . . . 9 (1 / 3) ∈ ℝ
9 1lt3 11860 . . . . . . . . . . 11 1 < 3
10 recgt1i 11588 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
116, 9, 10mp2an 691 . . . . . . . . . 10 (0 < (1 / 3) ∧ (1 / 3) < 1)
1211simpri 489 . . . . . . . . 9 (1 / 3) < 1
138, 4, 12ltleii 10814 . . . . . . . 8 (1 / 3) ≤ 1
14 iccss 12860 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 3) ≤ 1)) → (0[,](1 / 3)) ⊆ (0[,]1))
153, 4, 5, 13, 14mp4an 692 . . . . . . 7 (0[,](1 / 3)) ⊆ (0[,]1)
16 i0oii 45652 . . . . . . . . 9 ((1 / 3) ≤ 1 → (0[,)(1 / 3)) ∈ II)
1713, 16ax-mp 5 . . . . . . . 8 (0[,)(1 / 3)) ∈ II
1811simpli 487 . . . . . . . . . 10 0 < (1 / 3)
198rexri 10750 . . . . . . . . . . . . 13 (1 / 3) ∈ ℝ*
20 elico2 12856 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / 3) ∈ ℝ*) → (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3))))
213, 19, 20mp2an 691 . . . . . . . . . . . 12 (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)))
2221biimpri 231 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → 0 ∈ (0[,)(1 / 3)))
2322snssd 4702 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → {0} ⊆ (0[,)(1 / 3)))
243, 5, 18, 23mp3an 1458 . . . . . . . . 9 {0} ⊆ (0[,)(1 / 3))
25 icossicc 12881 . . . . . . . . 9 (0[,)(1 / 3)) ⊆ (0[,](1 / 3))
2624, 25pm3.2i 474 . . . . . . . 8 ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))
27 sseq2 3920 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → ({0} ⊆ 𝑔 ↔ {0} ⊆ (0[,)(1 / 3))))
28 sseq1 3919 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → (𝑔 ⊆ (0[,](1 / 3)) ↔ (0[,)(1 / 3)) ⊆ (0[,](1 / 3))))
2927, 28anbi12d 633 . . . . . . . . 9 (𝑔 = (0[,)(1 / 3)) → (({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))) ↔ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))))
3029rspcev 3543 . . . . . . . 8 (((0[,)(1 / 3)) ∈ II ∧ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))) → ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))
3117, 26, 30mp2an 691 . . . . . . 7 𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))
32 iitop 23594 . . . . . . . 8 II ∈ Top
3324, 25sstri 3903 . . . . . . . . 9 {0} ⊆ (0[,](1 / 3))
3433, 15sstri 3903 . . . . . . . 8 {0} ⊆ (0[,]1)
35 iiuni 23595 . . . . . . . . 9 (0[,]1) = II
3635isnei 21816 . . . . . . . 8 ((II ∈ Top ∧ {0} ⊆ (0[,]1)) → ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))))
3732, 34, 36mp2an 691 . . . . . . 7 ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))))
3815, 31, 37mpbir2an 710 . . . . . 6 (0[,](1 / 3)) ∈ ((nei‘II)‘{0})
3938a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (0[,](1 / 3)) ∈ ((nei‘II)‘{0}))
40 simprl 770 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑆 ⊆ (𝑓 “ {0}))
412, 39, 40cnneiima 45649 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆))
42 halfge0 11904 . . . . . . . 8 0 ≤ (1 / 2)
43 1le1 11319 . . . . . . . 8 1 ≤ 1
44 iccss 12860 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
453, 4, 42, 43, 44mp4an 692 . . . . . . 7 ((1 / 2)[,]1) ⊆ (0[,]1)
46 io1ii 45653 . . . . . . . . 9 (0 ≤ (1 / 2) → ((1 / 2)(,]1) ∈ II)
4742, 46ax-mp 5 . . . . . . . 8 ((1 / 2)(,]1) ∈ II
48 halflt1 11905 . . . . . . . . . 10 (1 / 2) < 1
49 halfre 11901 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
5049rexri 10750 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ*
51 elioc2 12855 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1)))
5250, 4, 51mp2an 691 . . . . . . . . . . . 12 (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1))
5352biimpri 231 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → 1 ∈ ((1 / 2)(,]1))
5453snssd 4702 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → {1} ⊆ ((1 / 2)(,]1))
554, 48, 43, 54mp3an 1458 . . . . . . . . 9 {1} ⊆ ((1 / 2)(,]1)
56 iocssicc 12882 . . . . . . . . 9 ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)
5755, 56pm3.2i 474 . . . . . . . 8 ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))
58 sseq2 3920 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ({1} ⊆ ↔ {1} ⊆ ((1 / 2)(,]1)))
59 sseq1 3919 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ( ⊆ ((1 / 2)[,]1) ↔ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)))
6058, 59anbi12d 633 . . . . . . . . 9 ( = ((1 / 2)(,]1) → (({1} ⊆ ⊆ ((1 / 2)[,]1)) ↔ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))))
6160rspcev 3543 . . . . . . . 8 ((((1 / 2)(,]1) ∈ II ∧ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))) → ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))
6247, 57, 61mp2an 691 . . . . . . 7 ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))
6355, 56sstri 3903 . . . . . . . . 9 {1} ⊆ ((1 / 2)[,]1)
6463, 45sstri 3903 . . . . . . . 8 {1} ⊆ (0[,]1)
6535isnei 21816 . . . . . . . 8 ((II ∈ Top ∧ {1} ⊆ (0[,]1)) → (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))))
6632, 64, 65mp2an 691 . . . . . . 7 (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))))
6745, 62, 66mpbir2an 710 . . . . . 6 ((1 / 2)[,]1) ∈ ((nei‘II)‘{1})
6867a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((1 / 2)[,]1) ∈ ((nei‘II)‘{1}))
69 simprr 772 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑇 ⊆ (𝑓 “ {1}))
702, 68, 69cnneiima 45649 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇))
71 icccldii 45651 . . . . . 6 ((0 ≤ 0 ∧ (1 / 3) ≤ 1) → (0[,](1 / 3)) ∈ (Clsd‘II))
725, 13, 71mp2an 691 . . . . 5 (0[,](1 / 3)) ∈ (Clsd‘II)
73 cnclima 21981 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (0[,](1 / 3)) ∈ (Clsd‘II)) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
742, 72, 73sylancl 589 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
75 icccldii 45651 . . . . . 6 ((0 ≤ (1 / 2) ∧ 1 ≤ 1) → ((1 / 2)[,]1) ∈ (Clsd‘II))
7642, 43, 75mp2an 691 . . . . 5 ((1 / 2)[,]1) ∈ (Clsd‘II)
77 cnclima 21981 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ ((1 / 2)[,]1) ∈ (Clsd‘II)) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
782, 76, 77sylancl 589 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
79 eqid 2758 . . . . . . . 8 𝐽 = 𝐽
8079, 35cnf 21959 . . . . . . 7 (𝑓 ∈ (𝐽 Cn II) → 𝑓: 𝐽⟶(0[,]1))
8180ffund 6507 . . . . . 6 (𝑓 ∈ (𝐽 Cn II) → Fun 𝑓)
822, 81syl 17 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → Fun 𝑓)
83 0xr 10739 . . . . . . 7 0 ∈ ℝ*
84 1xr 10751 . . . . . . 7 1 ∈ ℝ*
85 2lt3 11859 . . . . . . . 8 2 < 3
86 2re 11761 . . . . . . . . 9 2 ∈ ℝ
87 2pos 11790 . . . . . . . . 9 0 < 2
88 3pos 11792 . . . . . . . . 9 0 < 3
8986, 6, 87, 88ltrecii 11607 . . . . . . . 8 (2 < 3 ↔ (1 / 3) < (1 / 2))
9085, 89mpbi 233 . . . . . . 7 (1 / 3) < (1 / 2)
91 iccdisj2 45632 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 3) < (1 / 2)) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
9283, 84, 90, 91mp3an 1458 . . . . . 6 ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅
9392a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
94 ssidd 3917 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ⊆ (𝑓 “ (0[,](1 / 3))))
95 ssidd 3917 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ⊆ (𝑓 “ ((1 / 2)[,]1)))
9682, 93, 94, 95predisj 45630 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)
97 eleq1 2839 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛 ∈ (Clsd‘𝐽) ↔ (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽)))
98 ineq1 4111 . . . . . . 7 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚))
9998eqeq1d 2760 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅))
10097, 993anbi13d 1435 . . . . 5 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅)))
101 eleq1 2839 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (𝑚 ∈ (Clsd‘𝐽) ↔ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽)))
102 ineq2 4113 . . . . . . 7 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))))
103102eqeq1d 2760 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅))
104101, 1033anbi23d 1436 . . . . 5 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)))
105100, 104rspc2ev 3555 . . . 4 (((𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇) ∧ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
10641, 70, 74, 78, 96, 105syl113anc 1379 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
107106rexlimiva 3205 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
1081, 107syl 17 1 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  cin 3859  wss 3860  c0 4227  {csn 4525   cuni 4801   class class class wbr 5036  ccnv 5527  cima 5531  Fun wfun 6334  cfv 6340  (class class class)co 7156  cr 10587  0cc0 10588  1c1 10589  *cxr 10725   < clt 10726  cle 10727   / cdiv 11348  2c2 11742  3c3 11743  (,]cioc 12793  [,)cico 12794  [,]cicc 12795  Topctop 21606  Clsdccld 21729  neicnei 21810   Cn ccn 21937  IIcii 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fi 8921  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ioc 12797  df-ico 12798  df-icc 12799  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-rest 16767  df-topgen 16788  df-ordt 16845  df-ps 17889  df-tsr 17890  df-psmet 20171  df-xmet 20172  df-met 20173  df-bl 20174  df-mopn 20175  df-top 21607  df-topon 21624  df-bases 21659  df-cld 21732  df-ntr 21733  df-nei 21811  df-cn 21940  df-ii 23591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator