Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepfsepc Structured version   Visualization version   GIF version

Theorem sepfsepc 48850
Description: If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypothesis
Ref Expression
sepfsepc.1 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
Assertion
Ref Expression
sepfsepc (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑓,𝐽,𝑚,𝑛   𝑆,𝑓,𝑛   𝑇,𝑓,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛)   𝑆(𝑚)

Proof of Theorem sepfsepc
StepHypRef Expression
1 sepfsepc.1 . 2 (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
2 simpl 482 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑓 ∈ (𝐽 Cn II))
3 0re 11235 . . . . . . . 8 0 ∈ ℝ
4 1re 11233 . . . . . . . 8 1 ∈ ℝ
5 0le0 12339 . . . . . . . 8 0 ≤ 0
6 3re 12318 . . . . . . . . . 10 3 ∈ ℝ
7 3ne0 12344 . . . . . . . . . 10 3 ≠ 0
86, 7rereccli 12004 . . . . . . . . 9 (1 / 3) ∈ ℝ
9 1lt3 12411 . . . . . . . . . . 11 1 < 3
10 recgt1i 12137 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 1 < 3) → (0 < (1 / 3) ∧ (1 / 3) < 1))
116, 9, 10mp2an 692 . . . . . . . . . 10 (0 < (1 / 3) ∧ (1 / 3) < 1)
1211simpri 485 . . . . . . . . 9 (1 / 3) < 1
138, 4, 12ltleii 11356 . . . . . . . 8 (1 / 3) ≤ 1
14 iccss 13429 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 3) ≤ 1)) → (0[,](1 / 3)) ⊆ (0[,]1))
153, 4, 5, 13, 14mp4an 693 . . . . . . 7 (0[,](1 / 3)) ⊆ (0[,]1)
16 i0oii 48842 . . . . . . . . 9 ((1 / 3) ≤ 1 → (0[,)(1 / 3)) ∈ II)
1713, 16ax-mp 5 . . . . . . . 8 (0[,)(1 / 3)) ∈ II
1811simpli 483 . . . . . . . . . 10 0 < (1 / 3)
198rexri 11291 . . . . . . . . . . . . 13 (1 / 3) ∈ ℝ*
20 elico2 13425 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (1 / 3) ∈ ℝ*) → (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3))))
213, 19, 20mp2an 692 . . . . . . . . . . . 12 (0 ∈ (0[,)(1 / 3)) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)))
2221biimpri 228 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → 0 ∈ (0[,)(1 / 3)))
2322snssd 4785 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < (1 / 3)) → {0} ⊆ (0[,)(1 / 3)))
243, 5, 18, 23mp3an 1463 . . . . . . . . 9 {0} ⊆ (0[,)(1 / 3))
25 icossicc 13451 . . . . . . . . 9 (0[,)(1 / 3)) ⊆ (0[,](1 / 3))
2624, 25pm3.2i 470 . . . . . . . 8 ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))
27 sseq2 3985 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → ({0} ⊆ 𝑔 ↔ {0} ⊆ (0[,)(1 / 3))))
28 sseq1 3984 . . . . . . . . . 10 (𝑔 = (0[,)(1 / 3)) → (𝑔 ⊆ (0[,](1 / 3)) ↔ (0[,)(1 / 3)) ⊆ (0[,](1 / 3))))
2927, 28anbi12d 632 . . . . . . . . 9 (𝑔 = (0[,)(1 / 3)) → (({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))) ↔ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))))
3029rspcev 3601 . . . . . . . 8 (((0[,)(1 / 3)) ∈ II ∧ ({0} ⊆ (0[,)(1 / 3)) ∧ (0[,)(1 / 3)) ⊆ (0[,](1 / 3)))) → ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))
3117, 26, 30mp2an 692 . . . . . . 7 𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))
32 iitop 24822 . . . . . . . 8 II ∈ Top
3324, 25sstri 3968 . . . . . . . . 9 {0} ⊆ (0[,](1 / 3))
3433, 15sstri 3968 . . . . . . . 8 {0} ⊆ (0[,]1)
35 iiuni 24823 . . . . . . . . 9 (0[,]1) = II
3635isnei 23039 . . . . . . . 8 ((II ∈ Top ∧ {0} ⊆ (0[,]1)) → ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3))))))
3732, 34, 36mp2an 692 . . . . . . 7 ((0[,](1 / 3)) ∈ ((nei‘II)‘{0}) ↔ ((0[,](1 / 3)) ⊆ (0[,]1) ∧ ∃𝑔 ∈ II ({0} ⊆ 𝑔𝑔 ⊆ (0[,](1 / 3)))))
3815, 31, 37mpbir2an 711 . . . . . 6 (0[,](1 / 3)) ∈ ((nei‘II)‘{0})
3938a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (0[,](1 / 3)) ∈ ((nei‘II)‘{0}))
40 simprl 770 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑆 ⊆ (𝑓 “ {0}))
412, 39, 40cnneiima 48839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆))
42 halfge0 12455 . . . . . . . 8 0 ≤ (1 / 2)
43 1le1 11863 . . . . . . . 8 1 ≤ 1
44 iccss 13429 . . . . . . . 8 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
453, 4, 42, 43, 44mp4an 693 . . . . . . 7 ((1 / 2)[,]1) ⊆ (0[,]1)
46 io1ii 48843 . . . . . . . . 9 (0 ≤ (1 / 2) → ((1 / 2)(,]1) ∈ II)
4742, 46ax-mp 5 . . . . . . . 8 ((1 / 2)(,]1) ∈ II
48 halflt1 12456 . . . . . . . . . 10 (1 / 2) < 1
49 halfre 12452 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℝ
5049rexri 11291 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ*
51 elioc2 13424 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1)))
5250, 4, 51mp2an 692 . . . . . . . . . . . 12 (1 ∈ ((1 / 2)(,]1) ↔ (1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1))
5352biimpri 228 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → 1 ∈ ((1 / 2)(,]1))
5453snssd 4785 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (1 / 2) < 1 ∧ 1 ≤ 1) → {1} ⊆ ((1 / 2)(,]1))
554, 48, 43, 54mp3an 1463 . . . . . . . . 9 {1} ⊆ ((1 / 2)(,]1)
56 iocssicc 13452 . . . . . . . . 9 ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)
5755, 56pm3.2i 470 . . . . . . . 8 ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))
58 sseq2 3985 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ({1} ⊆ ↔ {1} ⊆ ((1 / 2)(,]1)))
59 sseq1 3984 . . . . . . . . . 10 ( = ((1 / 2)(,]1) → ( ⊆ ((1 / 2)[,]1) ↔ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1)))
6058, 59anbi12d 632 . . . . . . . . 9 ( = ((1 / 2)(,]1) → (({1} ⊆ ⊆ ((1 / 2)[,]1)) ↔ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))))
6160rspcev 3601 . . . . . . . 8 ((((1 / 2)(,]1) ∈ II ∧ ({1} ⊆ ((1 / 2)(,]1) ∧ ((1 / 2)(,]1) ⊆ ((1 / 2)[,]1))) → ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))
6247, 57, 61mp2an 692 . . . . . . 7 ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))
6355, 56sstri 3968 . . . . . . . . 9 {1} ⊆ ((1 / 2)[,]1)
6463, 45sstri 3968 . . . . . . . 8 {1} ⊆ (0[,]1)
6535isnei 23039 . . . . . . . 8 ((II ∈ Top ∧ {1} ⊆ (0[,]1)) → (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1)))))
6632, 64, 65mp2an 692 . . . . . . 7 (((1 / 2)[,]1) ∈ ((nei‘II)‘{1}) ↔ (((1 / 2)[,]1) ⊆ (0[,]1) ∧ ∃ ∈ II ({1} ⊆ ⊆ ((1 / 2)[,]1))))
6745, 62, 66mpbir2an 711 . . . . . 6 ((1 / 2)[,]1) ∈ ((nei‘II)‘{1})
6867a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((1 / 2)[,]1) ∈ ((nei‘II)‘{1}))
69 simprr 772 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → 𝑇 ⊆ (𝑓 “ {1}))
702, 68, 69cnneiima 48839 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇))
71 icccldii 48841 . . . . . 6 ((0 ≤ 0 ∧ (1 / 3) ≤ 1) → (0[,](1 / 3)) ∈ (Clsd‘II))
725, 13, 71mp2an 692 . . . . 5 (0[,](1 / 3)) ∈ (Clsd‘II)
73 cnclima 23204 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (0[,](1 / 3)) ∈ (Clsd‘II)) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
742, 72, 73sylancl 586 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽))
75 icccldii 48841 . . . . . 6 ((0 ≤ (1 / 2) ∧ 1 ≤ 1) → ((1 / 2)[,]1) ∈ (Clsd‘II))
7642, 43, 75mp2an 692 . . . . 5 ((1 / 2)[,]1) ∈ (Clsd‘II)
77 cnclima 23204 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ ((1 / 2)[,]1) ∈ (Clsd‘II)) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
782, 76, 77sylancl 586 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽))
79 eqid 2735 . . . . . . . 8 𝐽 = 𝐽
8079, 35cnf 23182 . . . . . . 7 (𝑓 ∈ (𝐽 Cn II) → 𝑓: 𝐽⟶(0[,]1))
8180ffund 6709 . . . . . 6 (𝑓 ∈ (𝐽 Cn II) → Fun 𝑓)
822, 81syl 17 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → Fun 𝑓)
83 0xr 11280 . . . . . . 7 0 ∈ ℝ*
84 1xr 11292 . . . . . . 7 1 ∈ ℝ*
85 2lt3 12410 . . . . . . . 8 2 < 3
86 2re 12312 . . . . . . . . 9 2 ∈ ℝ
87 2pos 12341 . . . . . . . . 9 0 < 2
88 3pos 12343 . . . . . . . . 9 0 < 3
8986, 6, 87, 88ltrecii 12156 . . . . . . . 8 (2 < 3 ↔ (1 / 3) < (1 / 2))
9085, 89mpbi 230 . . . . . . 7 (1 / 3) < (1 / 2)
91 iccdisj2 48819 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 3) < (1 / 2)) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
9283, 84, 90, 91mp3an 1463 . . . . . 6 ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅
9392a1i 11 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((0[,](1 / 3)) ∩ ((1 / 2)[,]1)) = ∅)
94 ssidd 3982 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ (0[,](1 / 3))) ⊆ (𝑓 “ (0[,](1 / 3))))
95 ssidd 3982 . . . . 5 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → (𝑓 “ ((1 / 2)[,]1)) ⊆ (𝑓 “ ((1 / 2)[,]1)))
9682, 93, 94, 95predisj 48737 . . . 4 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)
97 eleq1 2822 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛 ∈ (Clsd‘𝐽) ↔ (𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽)))
98 ineq1 4188 . . . . . . 7 (𝑛 = (𝑓 “ (0[,](1 / 3))) → (𝑛𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚))
9998eqeq1d 2737 . . . . . 6 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅))
10097, 993anbi13d 1440 . . . . 5 (𝑛 = (𝑓 “ (0[,](1 / 3))) → ((𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅)))
101 eleq1 2822 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (𝑚 ∈ (Clsd‘𝐽) ↔ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽)))
102 ineq2 4189 . . . . . . 7 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))))
103102eqeq1d 2737 . . . . . 6 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅ ↔ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅))
104101, 1033anbi23d 1441 . . . . 5 (𝑚 = (𝑓 “ ((1 / 2)[,]1)) → (((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ 𝑚) = ∅) ↔ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)))
105100, 104rspc2ev 3614 . . . 4 (((𝑓 “ (0[,](1 / 3))) ∈ ((nei‘𝐽)‘𝑆) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ ((nei‘𝐽)‘𝑇) ∧ ((𝑓 “ (0[,](1 / 3))) ∈ (Clsd‘𝐽) ∧ (𝑓 “ ((1 / 2)[,]1)) ∈ (Clsd‘𝐽) ∧ ((𝑓 “ (0[,](1 / 3))) ∩ (𝑓 “ ((1 / 2)[,]1))) = ∅)) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
10641, 70, 74, 78, 96, 105syl113anc 1384 . . 3 ((𝑓 ∈ (𝐽 Cn II) ∧ (𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1}))) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
107106rexlimiva 3133 . 2 (∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
1081, 107syl 17 1 (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  cin 3925  wss 3926  c0 4308  {csn 4601   cuni 4883   class class class wbr 5119  ccnv 5653  cima 5657  Fun wfun 6524  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128  *cxr 11266   < clt 11267  cle 11268   / cdiv 11892  2c2 12293  3c3 12294  (,]cioc 13361  [,)cico 13362  [,]cicc 13363  Topctop 22829  Clsdccld 22952  neicnei 23033   Cn ccn 23160  IIcii 24817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-rest 17434  df-topgen 17455  df-ordt 17513  df-ps 18574  df-tsr 18575  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cld 22955  df-ntr 22956  df-nei 23034  df-cn 23163  df-ii 24819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator