Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26ee Structured version   Visualization version   GIF version

Theorem cdleme26ee 40325
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26e.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26e.f 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme26e.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
cdleme26e.o 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
cdleme26e.i 𝐼 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme26e.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26ee ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝐼 (𝐸 𝑉))
Distinct variable groups:   𝑧,𝑢,𝐴   𝑧,𝐵,𝑢   𝑧,𝐻   𝑧, ,𝑢   𝑧,𝐾   𝑧, ,𝑢   𝑧, ,𝑢   𝑢,𝑁   𝑢,𝑂   𝑧,𝑃,𝑢   𝑧,𝑄,𝑢   𝑧,𝑆,𝑢   𝑧,𝑇,𝑢   𝑧,𝑈,𝑢   𝑧,𝑊,𝑢   𝑧,𝑉
Allowed substitution hints:   𝐸(𝑧,𝑢)   𝐹(𝑧,𝑢)   𝐻(𝑢)   𝐼(𝑧,𝑢)   𝐾(𝑢)   𝑁(𝑧)   𝑂(𝑧)   𝑉(𝑢)

Proof of Theorem cdleme26ee
StepHypRef Expression
1 simp11l 1285 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝐾 ∈ HL)
2 simp11r 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑊𝐻)
3 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp3l1 1279 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝑃𝑄)
6 cdleme26.l . . . 4 = (le‘𝐾)
7 cdleme26.j . . . 4 = (join‘𝐾)
8 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
106, 7, 8, 9cdlemb2 40006 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑧𝐴𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))
111, 2, 3, 4, 5, 10syl221anc 1383 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))
12 nfv 1914 . . 3 𝑧(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄)))
13 cdleme26e.i . . . . 5 𝐼 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
14 nfra1 3266 . . . . . 6 𝑧𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁)
15 nfcv 2898 . . . . . 6 𝑧𝐵
1614, 15nfriota 7372 . . . . 5 𝑧(𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
1713, 16nfcxfr 2896 . . . 4 𝑧𝐼
18 nfcv 2898 . . . 4 𝑧
19 cdleme26e.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
20 nfra1 3266 . . . . . . 7 𝑧𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)
2120, 15nfriota 7372 . . . . . 6 𝑧(𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
2219, 21nfcxfr 2896 . . . . 5 𝑧𝐸
23 nfcv 2898 . . . . 5 𝑧
24 nfcv 2898 . . . . 5 𝑧𝑉
2522, 23, 24nfov 7433 . . . 4 𝑧(𝐸 𝑉)
2617, 18, 25nfbr 5166 . . 3 𝑧 𝐼 (𝐸 𝑉)
27 simp111 1303 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp112 1304 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simp113 1305 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
30 simp121 1306 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
31 simp122 1307 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
32 simp123 1308 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑉𝐴𝑉 𝑊))
33 simp13l 1289 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)))
34 simp13r 1290 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑇 𝑉) = (𝑃 𝑄))
35 simp3r 1203 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → ¬ 𝑧 (𝑃 𝑄))
3634, 35jca 511 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → ((𝑇 𝑉) = (𝑃 𝑄) ∧ ¬ 𝑧 (𝑃 𝑄)))
37 simp2 1137 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑧𝐴)
38 simp3l 1202 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → ¬ 𝑧 𝑊)
3937, 38jca 511 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
40 cdleme26.b . . . . . 6 𝐵 = (Base‘𝐾)
41 cdleme26.m . . . . . 6 = (meet‘𝐾)
42 cdleme26e.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
43 cdleme26e.f . . . . . 6 𝐹 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
44 cdleme26e.n . . . . . 6 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑧) 𝑊)))
45 cdleme26e.o . . . . . 6 𝑂 = ((𝑃 𝑄) (𝐹 ((𝑇 𝑧) 𝑊)))
4640, 6, 7, 41, 8, 9, 42, 43, 44, 45, 13, 19cdleme26e 40324 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ ((𝑇 𝑉) = (𝑃 𝑄) ∧ ¬ 𝑧 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊))) → 𝐼 (𝐸 𝑉))
4727, 28, 29, 30, 31, 32, 33, 36, 39, 46syl333anc 1404 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) ∧ 𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝐼 (𝐸 𝑉))
48473exp 1119 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (𝑧𝐴 → ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝐼 (𝐸 𝑉))))
4912, 26, 48rexlimd 3249 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → (∃𝑧𝐴𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝐼 (𝐸 𝑉)))
5011, 49mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑃 𝑄)) ∧ (𝑇 𝑉) = (𝑃 𝑄))) → 𝐼 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060   class class class wbr 5119  cfv 6530  crio 7359  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  Atomscatm 39227  HLchlt 39314  LHypclh 39949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-riotaBAD 38917
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-undef 8270  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-llines 39463  df-lplanes 39464  df-lvols 39465  df-lines 39466  df-psubsp 39468  df-pmap 39469  df-padd 39761  df-lhyp 39953
This theorem is referenced by:  cdleme27a  40332
  Copyright terms: Public domain W3C validator