Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18b Structured version   Visualization version   GIF version

Theorem cdlemg18b 39171
Description: Lemma for cdlemg18c 39172. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg18b.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdlemg18b (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))

Proof of Theorem cdlemg18b
StepHypRef Expression
1 simp33 1212 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))
2 simp3r 1203 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
3 simp1l 1198 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝐾 ∈ HL)
4 simp1r 1199 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘Š ∈ 𝐻)
5 simp21 1207 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
6 simp22l 1293 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑄 ∈ 𝐴)
7 simp3l1 1279 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 β‰  𝑄)
8 cdlemg12.l . . . . . . . . . . . . 13 ≀ = (leβ€˜πΎ)
9 cdlemg12.j . . . . . . . . . . . . 13 ∨ = (joinβ€˜πΎ)
10 cdlemg12.m . . . . . . . . . . . . 13 ∧ = (meetβ€˜πΎ)
11 cdlemg12.a . . . . . . . . . . . . 13 𝐴 = (Atomsβ€˜πΎ)
12 cdlemg12.h . . . . . . . . . . . . 13 𝐻 = (LHypβ€˜πΎ)
13 cdlemg18b.u . . . . . . . . . . . . 13 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
148, 9, 10, 11, 12, 13cdleme0a 38703 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) β†’ π‘ˆ ∈ 𝐴)
153, 4, 5, 6, 7, 14syl212anc 1381 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘ˆ ∈ 𝐴)
16 simp1 1137 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
17 simp23 1209 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝐹 ∈ 𝑇)
18 cdlemg12.t . . . . . . . . . . . . 13 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
198, 11, 12, 18ltrnat 38632 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) β†’ (πΉβ€˜π‘„) ∈ 𝐴)
2016, 17, 6, 19syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (πΉβ€˜π‘„) ∈ 𝐴)
218, 9, 11hlatlej1 37866 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
223, 15, 20, 21syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
233hllatd 37855 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝐾 ∈ Lat)
24 simp21l 1291 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ∈ 𝐴)
25 eqid 2737 . . . . . . . . . . . . 13 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2625, 11atbase 37780 . . . . . . . . . . . 12 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2724, 26syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2825, 11atbase 37780 . . . . . . . . . . . 12 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
2915, 28syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
3025, 9, 11hlatjcl 37858 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))
313, 15, 20, 30syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))
3225, 8, 9latjle12 18346 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∧ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))) ↔ (𝑃 ∨ π‘ˆ) ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))))
3323, 27, 29, 31, 32syl13anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∧ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))) ↔ (𝑃 ∨ π‘ˆ) ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))))
342, 22, 33mpbi2and 711 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ π‘ˆ) ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
358, 9, 10, 11, 12, 13cdleme0cp 38706 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
363, 4, 5, 6, 35syl22anc 838 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
37 simp22 1208 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
3812, 18, 8, 9, 11, 10, 13cdlemg2kq 39094 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ π‘ˆ))
3916, 5, 37, 17, 38syl121anc 1376 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ π‘ˆ))
409, 11hlatjcom 37859 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘„) ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ ((πΉβ€˜π‘„) ∨ π‘ˆ) = (π‘ˆ ∨ (πΉβ€˜π‘„)))
413, 20, 15, 40syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘„) ∨ π‘ˆ) = (π‘ˆ ∨ (πΉβ€˜π‘„)))
4239, 41eqtr2d 2778 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (π‘ˆ ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
4334, 36, 423brtr3d 5141 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ 𝑄) ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
448, 11, 12, 18ltrnat 38632 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
4516, 17, 24, 44syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
468, 9, 11ps-1 37969 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (𝑃 ∨ 𝑄) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
473, 24, 6, 7, 45, 20, 46syl132anc 1389 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((𝑃 ∨ 𝑄) ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (𝑃 ∨ 𝑄) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
4843, 47mpbid 231 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ 𝑄) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
499, 11hlatjcom 37859 . . . . . . . 8 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)))
503, 45, 20, 49syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)))
5148, 50eqtr2d 2778 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄))
52513exp 1120 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) β†’ (((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄))))
5352exp4a 433 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) β†’ (𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄)))))
54533imp 1112 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ (𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄)))
5554necon3ad 2957 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ (((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄) β†’ Β¬ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))))
561, 55mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  meetcmee 18208  Latclat 18327  Atomscatm 37754  HLchlt 37841  LHypclh 38476  LTrncltrn 38593  trLctrl 38650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-riotaBAD 37444
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-undef 8209  df-map 8774  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990  df-lplanes 37991  df-lvols 37992  df-lines 37993  df-psubsp 37995  df-pmap 37996  df-padd 38288  df-lhyp 38480  df-laut 38481  df-ldil 38596  df-ltrn 38597  df-trl 38651
This theorem is referenced by:  cdlemg18c  39172
  Copyright terms: Public domain W3C validator