Proof of Theorem cdlemg18b
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp33 1212 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) | 
| 2 |  | simp3r 1203 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄))) | 
| 3 |  | simp1l 1198 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝐾 ∈ HL) | 
| 4 |  | simp1r 1199 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑊 ∈ 𝐻) | 
| 5 |  | simp21 1207 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 6 |  | simp22l 1293 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑄 ∈ 𝐴) | 
| 7 |  | simp3l1 1279 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑃 ≠ 𝑄) | 
| 8 |  | cdlemg12.l | . . . . . . . . . . . . 13
⊢  ≤ =
(le‘𝐾) | 
| 9 |  | cdlemg12.j | . . . . . . . . . . . . 13
⊢  ∨ =
(join‘𝐾) | 
| 10 |  | cdlemg12.m | . . . . . . . . . . . . 13
⊢  ∧ =
(meet‘𝐾) | 
| 11 |  | cdlemg12.a | . . . . . . . . . . . . 13
⊢ 𝐴 = (Atoms‘𝐾) | 
| 12 |  | cdlemg12.h | . . . . . . . . . . . . 13
⊢ 𝐻 = (LHyp‘𝐾) | 
| 13 |  | cdlemg18b.u | . . . . . . . . . . . . 13
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 14 | 8, 9, 10, 11, 12, 13 | cdleme0a 40213 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) | 
| 15 | 3, 4, 5, 6, 7, 14 | syl212anc 1382 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑈 ∈ 𝐴) | 
| 16 |  | simp1 1137 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 17 |  | simp23 1209 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝐹 ∈ 𝑇) | 
| 18 |  | cdlemg12.t | . . . . . . . . . . . . 13
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 19 | 8, 11, 12, 18 | ltrnat 40142 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) | 
| 20 | 16, 17, 6, 19 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝐹‘𝑄) ∈ 𝐴) | 
| 21 | 8, 9, 11 | hlatlej1 39376 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → 𝑈 ≤ (𝑈 ∨ (𝐹‘𝑄))) | 
| 22 | 3, 15, 20, 21 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑈 ≤ (𝑈 ∨ (𝐹‘𝑄))) | 
| 23 | 3 | hllatd 39365 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝐾 ∈ Lat) | 
| 24 |  | simp21l 1291 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑃 ∈ 𝐴) | 
| 25 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 26 | 25, 11 | atbase 39290 | . . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 27 | 24, 26 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑃 ∈ (Base‘𝐾)) | 
| 28 | 25, 11 | atbase 39290 | . . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) | 
| 29 | 15, 28 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → 𝑈 ∈ (Base‘𝐾)) | 
| 30 | 25, 9, 11 | hlatjcl 39368 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → (𝑈 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾)) | 
| 31 | 3, 15, 20, 30 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑈 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾)) | 
| 32 | 25, 8, 9 | latjle12 18495 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑈 ∨ (𝐹‘𝑄)) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)) ∧ 𝑈 ≤ (𝑈 ∨ (𝐹‘𝑄))) ↔ (𝑃 ∨ 𝑈) ≤ (𝑈 ∨ (𝐹‘𝑄)))) | 
| 33 | 23, 27, 29, 31, 32 | syl13anc 1374 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → ((𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)) ∧ 𝑈 ≤ (𝑈 ∨ (𝐹‘𝑄))) ↔ (𝑃 ∨ 𝑈) ≤ (𝑈 ∨ (𝐹‘𝑄)))) | 
| 34 | 2, 22, 33 | mpbi2and 712 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑃 ∨ 𝑈) ≤ (𝑈 ∨ (𝐹‘𝑄))) | 
| 35 | 8, 9, 10, 11, 12, 13 | cdleme0cp 40216 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) | 
| 36 | 3, 4, 5, 6, 35 | syl22anc 839 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) | 
| 37 |  | simp22 1208 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 38 | 12, 18, 8, 9, 11, 10, 13 | cdlemg2kq 40604 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ 𝑈)) | 
| 39 | 16, 5, 37, 17, 38 | syl121anc 1377 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ 𝑈)) | 
| 40 | 9, 11 | hlatjcom 39369 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑄) ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → ((𝐹‘𝑄) ∨ 𝑈) = (𝑈 ∨ (𝐹‘𝑄))) | 
| 41 | 3, 20, 15, 40 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → ((𝐹‘𝑄) ∨ 𝑈) = (𝑈 ∨ (𝐹‘𝑄))) | 
| 42 | 39, 41 | eqtr2d 2778 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑈 ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) | 
| 43 | 34, 36, 42 | 3brtr3d 5174 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑃 ∨ 𝑄) ≤ ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) | 
| 44 | 8, 11, 12, 18 | ltrnat 40142 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) | 
| 45 | 16, 17, 24, 44 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝐹‘𝑃) ∈ 𝐴) | 
| 46 | 8, 9, 11 | ps-1 39479 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ↔ (𝑃 ∨ 𝑄) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄)))) | 
| 47 | 3, 24, 6, 7, 45, 20, 46 | syl132anc 1390 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → ((𝑃 ∨ 𝑄) ≤ ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ↔ (𝑃 ∨ 𝑄) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄)))) | 
| 48 | 43, 47 | mpbid 232 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → (𝑃 ∨ 𝑄) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) | 
| 49 | 9, 11 | hlatjcom 39369 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑃) ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) | 
| 50 | 3, 45, 20, 49 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) | 
| 51 | 48, 50 | eqtr2d 2778 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄)) | 
| 52 | 51 | 3exp 1120 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → (((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) ∧ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄)))) | 
| 53 | 52 | exp4a 431 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → ((𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) → (𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄))))) | 
| 54 | 53 | 3imp 1111 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑄))) | 
| 55 | 54 | necon3ad 2953 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → (((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄) → ¬ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄)))) | 
| 56 | 1, 55 | mpd 15 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑈 ∨ (𝐹‘𝑄))) |