Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18b Structured version   Visualization version   GIF version

Theorem cdlemg18b 39545
Description: Lemma for cdlemg18c 39546. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg18b.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdlemg18b (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))

Proof of Theorem cdlemg18b
StepHypRef Expression
1 simp33 1211 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))
2 simp3r 1202 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
3 simp1l 1197 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝐾 ∈ HL)
4 simp1r 1198 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘Š ∈ 𝐻)
5 simp21 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
6 simp22l 1292 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑄 ∈ 𝐴)
7 simp3l1 1278 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 β‰  𝑄)
8 cdlemg12.l . . . . . . . . . . . . 13 ≀ = (leβ€˜πΎ)
9 cdlemg12.j . . . . . . . . . . . . 13 ∨ = (joinβ€˜πΎ)
10 cdlemg12.m . . . . . . . . . . . . 13 ∧ = (meetβ€˜πΎ)
11 cdlemg12.a . . . . . . . . . . . . 13 𝐴 = (Atomsβ€˜πΎ)
12 cdlemg12.h . . . . . . . . . . . . 13 𝐻 = (LHypβ€˜πΎ)
13 cdlemg18b.u . . . . . . . . . . . . 13 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
148, 9, 10, 11, 12, 13cdleme0a 39077 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) β†’ π‘ˆ ∈ 𝐴)
153, 4, 5, 6, 7, 14syl212anc 1380 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘ˆ ∈ 𝐴)
16 simp1 1136 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
17 simp23 1208 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝐹 ∈ 𝑇)
18 cdlemg12.t . . . . . . . . . . . . 13 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
198, 11, 12, 18ltrnat 39006 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) β†’ (πΉβ€˜π‘„) ∈ 𝐴)
2016, 17, 6, 19syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (πΉβ€˜π‘„) ∈ 𝐴)
218, 9, 11hlatlej1 38240 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
223, 15, 20, 21syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
233hllatd 38229 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝐾 ∈ Lat)
24 simp21l 1290 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ∈ 𝐴)
25 eqid 2732 . . . . . . . . . . . . 13 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2625, 11atbase 38154 . . . . . . . . . . . 12 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2724, 26syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2825, 11atbase 38154 . . . . . . . . . . . 12 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
2915, 28syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
3025, 9, 11hlatjcl 38232 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))
313, 15, 20, 30syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))
3225, 8, 9latjle12 18402 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∧ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))) ↔ (𝑃 ∨ π‘ˆ) ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))))
3323, 27, 29, 31, 32syl13anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) ∧ π‘ˆ ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))) ↔ (𝑃 ∨ π‘ˆ) ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))))
342, 22, 33mpbi2and 710 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ π‘ˆ) ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
358, 9, 10, 11, 12, 13cdleme0cp 39080 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
363, 4, 5, 6, 35syl22anc 837 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
37 simp22 1207 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
3812, 18, 8, 9, 11, 10, 13cdlemg2kq 39468 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ π‘ˆ))
3916, 5, 37, 17, 38syl121anc 1375 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ π‘ˆ))
409, 11hlatjcom 38233 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘„) ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ ((πΉβ€˜π‘„) ∨ π‘ˆ) = (π‘ˆ ∨ (πΉβ€˜π‘„)))
413, 20, 15, 40syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘„) ∨ π‘ˆ) = (π‘ˆ ∨ (πΉβ€˜π‘„)))
4239, 41eqtr2d 2773 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (π‘ˆ ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
4334, 36, 423brtr3d 5179 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ 𝑄) ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
448, 11, 12, 18ltrnat 39006 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
4516, 17, 24, 44syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (πΉβ€˜π‘ƒ) ∈ 𝐴)
468, 9, 11ps-1 38343 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (𝑃 ∨ 𝑄) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
473, 24, 6, 7, 45, 20, 46syl132anc 1388 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((𝑃 ∨ 𝑄) ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (𝑃 ∨ 𝑄) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
4843, 47mpbid 231 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ (𝑃 ∨ 𝑄) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
499, 11hlatjcom 38233 . . . . . . . 8 ((𝐾 ∈ HL ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴 ∧ (πΉβ€˜π‘„) ∈ 𝐴) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)))
503, 45, 20, 49syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)))
5148, 50eqtr2d 2773 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄))
52513exp 1119 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) β†’ (((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) ∧ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄))))
5352exp4a 432 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄)) β†’ (𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄)))))
54533imp 1111 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ (𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)) β†’ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) = (𝑃 ∨ 𝑄)))
5554necon3ad 2953 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ (((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄) β†’ Β¬ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„))))
561, 55mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ (πΉβ€˜π‘ƒ) β‰  𝑄 ∧ ((πΉβ€˜π‘„) ∨ (πΉβ€˜π‘ƒ)) β‰  (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑃 ≀ (π‘ˆ ∨ (πΉβ€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  meetcmee 18264  Latclat 18383  Atomscatm 38128  HLchlt 38215  LHypclh 38850  LTrncltrn 38967  trLctrl 39024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-undef 8257  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025
This theorem is referenced by:  cdlemg18c  39546
  Copyright terms: Public domain W3C validator