| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp2 1137 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) | 
| 3 |  | simp3ll 1244 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑌 ∈ 𝐵) | 
| 4 |  | simp3r 1202 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≤ 𝑊) | 
| 5 |  | dihmeetlem14.b | . . . 4
⊢ 𝐵 = (Base‘𝐾) | 
| 6 |  | dihmeetlem14.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 7 |  | dihmeetlem14.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 8 |  | dihmeetlem14.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 9 |  | dihmeetlem14.a | . . . 4
⊢ 𝐴 = (Atoms‘𝐾) | 
| 10 |  | dihmeetlem14.h | . . . 4
⊢ 𝐻 = (LHyp‘𝐾) | 
| 11 | 5, 6, 7, 8, 9, 10 | lhpmcvr6N 40031 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋)) | 
| 12 | 1, 2, 3, 4, 11 | syl112anc 1375 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋)) | 
| 13 |  | simp3l 1201 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊)) | 
| 14 |  | simp2l 1199 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑋 ∈ 𝐵) | 
| 15 |  | simp1l 1197 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝐾 ∈ HL) | 
| 16 | 15 | hllatd 39366 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝐾 ∈ Lat) | 
| 17 | 5, 8 | latmcom 18509 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∧ 𝑋) = (𝑋 ∧ 𝑌)) | 
| 18 | 16, 3, 14, 17 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑌 ∧ 𝑋) = (𝑋 ∧ 𝑌)) | 
| 19 | 18, 4 | eqbrtrd 5164 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑌 ∧ 𝑋) ≤ 𝑊) | 
| 20 | 5, 6, 7, 8, 9, 10 | lhpmcvr6N 40031 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 ∧ 𝑋) ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌)) | 
| 21 | 1, 13, 14, 19, 20 | syl112anc 1375 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌)) | 
| 22 |  | reeanv 3228 | . . 3
⊢
(∃𝑞 ∈
𝐴 ∃𝑟 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌)) ↔ (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) | 
| 23 |  | simp11 1203 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 24 |  | simp12 1204 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) | 
| 25 | 3 | 3ad2ant1 1133 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → 𝑌 ∈ 𝐵) | 
| 26 |  | simp2l 1199 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → 𝑞 ∈ 𝐴) | 
| 27 |  | simp3l1 1278 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → ¬ 𝑞 ≤ 𝑊) | 
| 28 | 26, 27 | jca 511 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) | 
| 29 |  | simp2r 1200 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → 𝑟 ∈ 𝐴) | 
| 30 |  | simp3r1 1281 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → ¬ 𝑟 ≤ 𝑊) | 
| 31 | 29, 30 | jca 511 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊)) | 
| 32 |  | simp3l3 1280 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → 𝑞 ≤ 𝑋) | 
| 33 |  | simp3r3 1283 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → 𝑟 ≤ 𝑌) | 
| 34 |  | simp13r 1289 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝑋 ∧ 𝑌) ≤ 𝑊) | 
| 35 | 32, 33, 34 | 3jca 1128 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝑞 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) | 
| 36 |  | dihmeetlem14.u | . . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 37 |  | dihmeetlem14.s | . . . . . . 7
⊢  ⊕ =
(LSSum‘𝑈) | 
| 38 |  | dihmeetlem14.i | . . . . . . 7
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| 39 | 5, 6, 10, 7, 8, 9,
36, 37, 38 | dihmeetlem19N 41328 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑌 ∈ 𝐵) ∧ ((𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ (𝑞 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊))) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | 
| 40 | 23, 24, 25, 28, 31, 35, 39 | syl33anc 1386 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌))) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) | 
| 41 | 40 | 3exp 1119 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))))) | 
| 42 | 41 | rexlimdvv 3211 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌)))) | 
| 43 | 22, 42 | biimtrrid 243 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑌 ∧ 𝑞 ≤ 𝑋) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌)))) | 
| 44 | 12, 21, 43 | mp2and 699 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ≤ 𝑊) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |