| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcdv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 3564. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| spcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | spcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | spcimdv 3543 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: spcgv 3546 mrissmrcd 17541 usgrexmpl12ngric 48069 |
| Copyright terms: Public domain | W3C validator |