MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcdv Structured version   Visualization version   GIF version

Theorem spcdv 3523
Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 3543. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
spcdv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcdv
StepHypRef Expression
1 spcimdv.1 . 2 (𝜑𝐴𝐵)
2 spcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimpd 228 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
41, 3spcimdv 3522 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-clel 2817
This theorem is referenced by:  spcgv  3525  mrissmrcd  17266
  Copyright terms: Public domain W3C validator