| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimdv | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| spcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| spcimdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | elisset 2823 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 4 | spcimdv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
| 5 | 4 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
| 6 | 5 | eximdv 1917 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓 → 𝜒))) |
| 7 | 3, 6 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑥(𝜓 → 𝜒)) |
| 8 | 19.36v 1987 | . 2 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → 𝜒)) | |
| 9 | 7, 8 | sylib 218 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-clel 2816 |
| This theorem is referenced by: spcdv 3594 spcimedv 3595 rspcimdv 3612 mrieqv2d 17682 mreexexlemd 17687 intabssd 43532 |
| Copyright terms: Public domain | W3C validator |