MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimdv Structured version   Visualization version   GIF version

Theorem spcimdv 3522
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) Avoid ax-10 2139 and ax-11 2156. (Revised by Gino Giotto, 20-Aug-2023.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
spcimdv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcimdv
StepHypRef Expression
1 spcimdv.1 . . . 4 (𝜑𝐴𝐵)
2 elisset 2820 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
31, 2syl 17 . . 3 (𝜑 → ∃𝑥 𝑥 = 𝐴)
4 spcimdv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
54ex 412 . . . 4 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
65eximdv 1921 . . 3 (𝜑 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜒)))
73, 6mpd 15 . 2 (𝜑 → ∃𝑥(𝜓𝜒))
8 19.36v 1992 . 2 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓𝜒))
97, 8sylib 217 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-clel 2817
This theorem is referenced by:  spcdv  3523  spcimedv  3524  rspcimdv  3541  mrieqv2d  17265  mreexexlemd  17270  intabssd  41024
  Copyright terms: Public domain W3C validator