| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimedv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| spcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| spcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | spcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | 1, 3 | spcimdv 3543 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 → ¬ 𝜒)) |
| 5 | 4 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ ∀𝑥 ¬ 𝜓)) |
| 6 | df-ex 1781 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
| 7 | 5, 6 | imbitrrdi 252 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: spc3egv 3553 hashf1rn 14265 wwlktovfo 14871 uvcendim 21790 wlkiswwlks2 29860 wwlksnextsurj 29885 elwwlks2 29954 elwspths2spth 29955 clwlkclwwlklem1 29986 sticksstones4 42248 rtrclex 43715 clcnvlem 43721 iunrelexpuztr 43817 |
| Copyright terms: Public domain | W3C validator |