Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcimedv | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
spcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | spcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒)) |
4 | 1, 3 | spcimdv 3522 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 → ¬ 𝜒)) |
5 | 4 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ ∀𝑥 ¬ 𝜓)) |
6 | df-ex 1784 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
7 | 5, 6 | syl6ibr 251 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: spc3egv 3532 hashf1rn 13995 cshwsexa 14465 wwlktovfo 14601 uvcendim 20964 wlkiswwlks2 28141 wwlksnextsurj 28166 elwwlks2 28232 elwspths2spth 28233 clwlkclwwlklem1 28264 sticksstones4 40033 rtrclex 41114 clcnvlem 41120 iunrelexpuztr 41216 |
Copyright terms: Public domain | W3C validator |