| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimedv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| spcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| spcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | spcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
| 3 | 2 | con3d 152 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒)) |
| 4 | 1, 3 | spcimdv 3562 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 → ¬ 𝜒)) |
| 5 | 4 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ ∀𝑥 ¬ 𝜓)) |
| 6 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
| 7 | 5, 6 | imbitrrdi 252 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: spc3egv 3572 hashf1rn 14324 cshwsexaOLD 14797 wwlktovfo 14931 uvcendim 21763 wlkiswwlks2 29812 wwlksnextsurj 29837 elwwlks2 29903 elwspths2spth 29904 clwlkclwwlklem1 29935 sticksstones4 42144 rtrclex 43613 clcnvlem 43619 iunrelexpuztr 43715 |
| Copyright terms: Public domain | W3C validator |