![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcimedv | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
spcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | spcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒)) |
4 | 1, 3 | spcimdv 3583 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 → ¬ 𝜒)) |
5 | 4 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ ∀𝑥 ¬ 𝜓)) |
6 | df-ex 1781 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
7 | 5, 6 | imbitrrdi 251 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-clel 2809 |
This theorem is referenced by: spc3egv 3593 hashf1rn 14319 cshwsexaOLD 14782 wwlktovfo 14916 uvcendim 21712 wlkiswwlks2 29562 wwlksnextsurj 29587 elwwlks2 29653 elwspths2spth 29654 clwlkclwwlklem1 29685 sticksstones4 41432 rtrclex 42831 clcnvlem 42837 iunrelexpuztr 42933 |
Copyright terms: Public domain | W3C validator |