![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrissmrcd | Structured version Visualization version GIF version |
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17466, and so are equal by mrieqv2d 17478.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrcd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrcd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrcd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrcd.4 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mrissmrcd.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
mrissmrcd.6 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mrissmrcd | ⊢ (𝜑 → 𝑆 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrcd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrissmrcd.2 | . . . . . 6 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mrissmrcd.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
4 | mrissmrcd.5 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | 1, 2, 3, 4 | mressmrcd 17466 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
6 | pssne 4054 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑇) ≠ (𝑁‘𝑆)) | |
7 | 6 | necomd 2997 | . . . . . 6 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑆) ≠ (𝑁‘𝑇)) |
8 | 7 | necon2bi 2972 | . . . . 5 ⊢ ((𝑁‘𝑆) = (𝑁‘𝑇) → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
10 | mrissmrcd.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
11 | mrissmrcd.3 | . . . . . . 7 ⊢ 𝐼 = (mrInd‘𝐴) | |
12 | 11, 1, 10 | mrissd 17475 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
13 | 1, 2, 11, 12 | mrieqv2d 17478 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)))) |
14 | 10, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆))) |
15 | 10, 4 | ssexd 5279 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
16 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → 𝑠 = 𝑇) | |
17 | 16 | psseq1d 4050 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆)) |
18 | 16 | fveq2d 6843 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑁‘𝑠) = (𝑁‘𝑇)) |
19 | 18 | psseq1d 4050 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑁‘𝑠) ⊊ (𝑁‘𝑆) ↔ (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
20 | 17, 19 | imbi12d 344 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) ↔ (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
21 | 15, 20 | spcdv 3551 | . . . . 5 ⊢ (𝜑 → (∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
22 | 14, 21 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
23 | 9, 22 | mtod 197 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ⊊ 𝑆) |
24 | sspss 4057 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) | |
25 | 4, 24 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) |
26 | 25 | ord 862 | . . 3 ⊢ (𝜑 → (¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆)) |
27 | 23, 26 | mpd 15 | . 2 ⊢ (𝜑 → 𝑇 = 𝑆) |
28 | 27 | eqcomd 2743 | 1 ⊢ (𝜑 → 𝑆 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∀wal 1539 = wceq 1541 ∈ wcel 2106 Vcvv 3443 ⊆ wss 3908 ⊊ wpss 3909 ‘cfv 6493 Moorecmre 17421 mrClscmrc 17422 mrIndcmri 17423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-fv 6501 df-mre 17425 df-mrc 17426 df-mri 17427 |
This theorem is referenced by: mreexexlem3d 17485 acsmap2d 18403 |
Copyright terms: Public domain | W3C validator |