MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrcd Structured version   Visualization version   GIF version

Theorem mrissmrcd 17698
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17685, and so are equal by mrieqv2d 17697.) (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissmrcd.2 𝑁 = (mrCls‘𝐴)
mrissmrcd.3 𝐼 = (mrInd‘𝐴)
mrissmrcd.4 (𝜑𝑆 ⊆ (𝑁𝑇))
mrissmrcd.5 (𝜑𝑇𝑆)
mrissmrcd.6 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissmrcd (𝜑𝑆 = 𝑇)

Proof of Theorem mrissmrcd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mrissmrcd.1 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissmrcd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
3 mrissmrcd.4 . . . . . 6 (𝜑𝑆 ⊆ (𝑁𝑇))
4 mrissmrcd.5 . . . . . 6 (𝜑𝑇𝑆)
51, 2, 3, 4mressmrcd 17685 . . . . 5 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
6 pssne 4122 . . . . . . 7 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑇) ≠ (𝑁𝑆))
76necomd 3002 . . . . . 6 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑆) ≠ (𝑁𝑇))
87necon2bi 2977 . . . . 5 ((𝑁𝑆) = (𝑁𝑇) → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
95, 8syl 17 . . . 4 (𝜑 → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
10 mrissmrcd.6 . . . . . 6 (𝜑𝑆𝐼)
11 mrissmrcd.3 . . . . . . 7 𝐼 = (mrInd‘𝐴)
1211, 1, 10mrissd 17694 . . . . . . 7 (𝜑𝑆𝑋)
131, 2, 11, 12mrieqv2d 17697 . . . . . 6 (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
1410, 13mpbid 232 . . . . 5 (𝜑 → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
1510, 4ssexd 5342 . . . . . 6 (𝜑𝑇 ∈ V)
16 simpr 484 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → 𝑠 = 𝑇)
1716psseq1d 4118 . . . . . . 7 ((𝜑𝑠 = 𝑇) → (𝑠𝑆𝑇𝑆))
1816fveq2d 6924 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → (𝑁𝑠) = (𝑁𝑇))
1918psseq1d 4118 . . . . . . 7 ((𝜑𝑠 = 𝑇) → ((𝑁𝑠) ⊊ (𝑁𝑆) ↔ (𝑁𝑇) ⊊ (𝑁𝑆)))
2017, 19imbi12d 344 . . . . . 6 ((𝜑𝑠 = 𝑇) → ((𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ↔ (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2115, 20spcdv 3607 . . . . 5 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2214, 21mpd 15 . . . 4 (𝜑 → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆)))
239, 22mtod 198 . . 3 (𝜑 → ¬ 𝑇𝑆)
24 sspss 4125 . . . . 5 (𝑇𝑆 ↔ (𝑇𝑆𝑇 = 𝑆))
254, 24sylib 218 . . . 4 (𝜑 → (𝑇𝑆𝑇 = 𝑆))
2625ord 863 . . 3 (𝜑 → (¬ 𝑇𝑆𝑇 = 𝑆))
2723, 26mpd 15 . 2 (𝜑𝑇 = 𝑆)
2827eqcomd 2746 1 (𝜑𝑆 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wal 1535   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  wpss 3977  cfv 6573  Moorecmre 17640  mrClscmrc 17641  mrIndcmri 17642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-mre 17644  df-mrc 17645  df-mri 17646
This theorem is referenced by:  mreexexlem3d  17704  acsmap2d  18625
  Copyright terms: Public domain W3C validator