Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrissmrcd | Structured version Visualization version GIF version |
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 16957, and so are equal by mrieqv2d 16969.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrcd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrcd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrcd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrcd.4 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mrissmrcd.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
mrissmrcd.6 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mrissmrcd | ⊢ (𝜑 → 𝑆 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrcd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrissmrcd.2 | . . . . . 6 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mrissmrcd.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
4 | mrissmrcd.5 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | 1, 2, 3, 4 | mressmrcd 16957 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
6 | pssne 4003 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑇) ≠ (𝑁‘𝑆)) | |
7 | 6 | necomd 3007 | . . . . . 6 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑆) ≠ (𝑁‘𝑇)) |
8 | 7 | necon2bi 2982 | . . . . 5 ⊢ ((𝑁‘𝑆) = (𝑁‘𝑇) → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
10 | mrissmrcd.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
11 | mrissmrcd.3 | . . . . . . 7 ⊢ 𝐼 = (mrInd‘𝐴) | |
12 | 11, 1, 10 | mrissd 16966 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
13 | 1, 2, 11, 12 | mrieqv2d 16969 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)))) |
14 | 10, 13 | mpbid 235 | . . . . 5 ⊢ (𝜑 → ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆))) |
15 | 10, 4 | ssexd 5195 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
16 | simpr 489 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → 𝑠 = 𝑇) | |
17 | 16 | psseq1d 3999 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆)) |
18 | 16 | fveq2d 6663 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑁‘𝑠) = (𝑁‘𝑇)) |
19 | 18 | psseq1d 3999 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑁‘𝑠) ⊊ (𝑁‘𝑆) ↔ (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
20 | 17, 19 | imbi12d 349 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) ↔ (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
21 | 15, 20 | spcdv 3512 | . . . . 5 ⊢ (𝜑 → (∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
22 | 14, 21 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
23 | 9, 22 | mtod 201 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ⊊ 𝑆) |
24 | sspss 4006 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) | |
25 | 4, 24 | sylib 221 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) |
26 | 25 | ord 862 | . . 3 ⊢ (𝜑 → (¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆)) |
27 | 23, 26 | mpd 15 | . 2 ⊢ (𝜑 → 𝑇 = 𝑆) |
28 | 27 | eqcomd 2765 | 1 ⊢ (𝜑 → 𝑆 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∨ wo 845 ∀wal 1537 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ⊆ wss 3859 ⊊ wpss 3860 ‘cfv 6336 Moorecmre 16912 mrClscmrc 16913 mrIndcmri 16914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-int 4840 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-mre 16916 df-mrc 16917 df-mri 16918 |
This theorem is referenced by: mreexexlem3d 16976 acsmap2d 17856 |
Copyright terms: Public domain | W3C validator |