Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrissmrcd | Structured version Visualization version GIF version |
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17253, and so are equal by mrieqv2d 17265.) (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrcd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrcd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrcd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrcd.4 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mrissmrcd.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
mrissmrcd.6 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
Ref | Expression |
---|---|
mrissmrcd | ⊢ (𝜑 → 𝑆 = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrcd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrissmrcd.2 | . . . . . 6 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mrissmrcd.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
4 | mrissmrcd.5 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | 1, 2, 3, 4 | mressmrcd 17253 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
6 | pssne 4027 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑇) ≠ (𝑁‘𝑆)) | |
7 | 6 | necomd 2998 | . . . . . 6 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑆) ≠ (𝑁‘𝑇)) |
8 | 7 | necon2bi 2973 | . . . . 5 ⊢ ((𝑁‘𝑆) = (𝑁‘𝑇) → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
10 | mrissmrcd.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
11 | mrissmrcd.3 | . . . . . . 7 ⊢ 𝐼 = (mrInd‘𝐴) | |
12 | 11, 1, 10 | mrissd 17262 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
13 | 1, 2, 11, 12 | mrieqv2d 17265 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)))) |
14 | 10, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆))) |
15 | 10, 4 | ssexd 5243 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
16 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → 𝑠 = 𝑇) | |
17 | 16 | psseq1d 4023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆)) |
18 | 16 | fveq2d 6760 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑁‘𝑠) = (𝑁‘𝑇)) |
19 | 18 | psseq1d 4023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑁‘𝑠) ⊊ (𝑁‘𝑆) ↔ (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
20 | 17, 19 | imbi12d 344 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) ↔ (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
21 | 15, 20 | spcdv 3523 | . . . . 5 ⊢ (𝜑 → (∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
22 | 14, 21 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
23 | 9, 22 | mtod 197 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ⊊ 𝑆) |
24 | sspss 4030 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) | |
25 | 4, 24 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) |
26 | 25 | ord 860 | . . 3 ⊢ (𝜑 → (¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆)) |
27 | 23, 26 | mpd 15 | . 2 ⊢ (𝜑 → 𝑇 = 𝑆) |
28 | 27 | eqcomd 2744 | 1 ⊢ (𝜑 → 𝑆 = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ⊊ wpss 3884 ‘cfv 6418 Moorecmre 17208 mrClscmrc 17209 mrIndcmri 17210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-mre 17212 df-mrc 17213 df-mri 17214 |
This theorem is referenced by: mreexexlem3d 17272 acsmap2d 18188 |
Copyright terms: Public domain | W3C validator |