MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrcd Structured version   Visualization version   GIF version

Theorem mrissmrcd 17266
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17253, and so are equal by mrieqv2d 17265.) (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissmrcd.2 𝑁 = (mrCls‘𝐴)
mrissmrcd.3 𝐼 = (mrInd‘𝐴)
mrissmrcd.4 (𝜑𝑆 ⊆ (𝑁𝑇))
mrissmrcd.5 (𝜑𝑇𝑆)
mrissmrcd.6 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissmrcd (𝜑𝑆 = 𝑇)

Proof of Theorem mrissmrcd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mrissmrcd.1 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissmrcd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
3 mrissmrcd.4 . . . . . 6 (𝜑𝑆 ⊆ (𝑁𝑇))
4 mrissmrcd.5 . . . . . 6 (𝜑𝑇𝑆)
51, 2, 3, 4mressmrcd 17253 . . . . 5 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
6 pssne 4027 . . . . . . 7 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑇) ≠ (𝑁𝑆))
76necomd 2998 . . . . . 6 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑆) ≠ (𝑁𝑇))
87necon2bi 2973 . . . . 5 ((𝑁𝑆) = (𝑁𝑇) → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
95, 8syl 17 . . . 4 (𝜑 → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
10 mrissmrcd.6 . . . . . 6 (𝜑𝑆𝐼)
11 mrissmrcd.3 . . . . . . 7 𝐼 = (mrInd‘𝐴)
1211, 1, 10mrissd 17262 . . . . . . 7 (𝜑𝑆𝑋)
131, 2, 11, 12mrieqv2d 17265 . . . . . 6 (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
1410, 13mpbid 231 . . . . 5 (𝜑 → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
1510, 4ssexd 5243 . . . . . 6 (𝜑𝑇 ∈ V)
16 simpr 484 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → 𝑠 = 𝑇)
1716psseq1d 4023 . . . . . . 7 ((𝜑𝑠 = 𝑇) → (𝑠𝑆𝑇𝑆))
1816fveq2d 6760 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → (𝑁𝑠) = (𝑁𝑇))
1918psseq1d 4023 . . . . . . 7 ((𝜑𝑠 = 𝑇) → ((𝑁𝑠) ⊊ (𝑁𝑆) ↔ (𝑁𝑇) ⊊ (𝑁𝑆)))
2017, 19imbi12d 344 . . . . . 6 ((𝜑𝑠 = 𝑇) → ((𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ↔ (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2115, 20spcdv 3523 . . . . 5 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2214, 21mpd 15 . . . 4 (𝜑 → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆)))
239, 22mtod 197 . . 3 (𝜑 → ¬ 𝑇𝑆)
24 sspss 4030 . . . . 5 (𝑇𝑆 ↔ (𝑇𝑆𝑇 = 𝑆))
254, 24sylib 217 . . . 4 (𝜑 → (𝑇𝑆𝑇 = 𝑆))
2625ord 860 . . 3 (𝜑 → (¬ 𝑇𝑆𝑇 = 𝑆))
2723, 26mpd 15 . 2 (𝜑𝑇 = 𝑆)
2827eqcomd 2744 1 (𝜑𝑆 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  wpss 3884  cfv 6418  Moorecmre 17208  mrClscmrc 17209  mrIndcmri 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213  df-mri 17214
This theorem is referenced by:  mreexexlem3d  17272  acsmap2d  18188
  Copyright terms: Public domain W3C validator