| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrissmrcd | Structured version Visualization version GIF version | ||
| Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17595, and so are equal by mrieqv2d 17607.) (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrissmrcd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrissmrcd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrissmrcd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mrissmrcd.4 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
| mrissmrcd.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| mrissmrcd.6 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| mrissmrcd | ⊢ (𝜑 → 𝑆 = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrissmrcd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mrissmrcd.2 | . . . . . 6 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | mrissmrcd.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
| 4 | mrissmrcd.5 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 5 | 1, 2, 3, 4 | mressmrcd 17595 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| 6 | pssne 4065 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑇) ≠ (𝑁‘𝑆)) | |
| 7 | 6 | necomd 2981 | . . . . . 6 ⊢ ((𝑁‘𝑇) ⊊ (𝑁‘𝑆) → (𝑁‘𝑆) ≠ (𝑁‘𝑇)) |
| 8 | 7 | necon2bi 2956 | . . . . 5 ⊢ ((𝑁‘𝑆) = (𝑁‘𝑇) → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ (𝑁‘𝑇) ⊊ (𝑁‘𝑆)) |
| 10 | mrissmrcd.6 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 11 | mrissmrcd.3 | . . . . . . 7 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 12 | 11, 1, 10 | mrissd 17604 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 13 | 1, 2, 11, 12 | mrieqv2d 17607 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)))) |
| 14 | 10, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆))) |
| 15 | 10, 4 | ssexd 5282 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ V) |
| 16 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → 𝑠 = 𝑇) | |
| 17 | 16 | psseq1d 4061 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆)) |
| 18 | 16 | fveq2d 6865 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → (𝑁‘𝑠) = (𝑁‘𝑇)) |
| 19 | 18 | psseq1d 4061 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑁‘𝑠) ⊊ (𝑁‘𝑆) ↔ (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
| 20 | 17, 19 | imbi12d 344 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 = 𝑇) → ((𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) ↔ (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
| 21 | 15, 20 | spcdv 3563 | . . . . 5 ⊢ (𝜑 → (∀𝑠(𝑠 ⊊ 𝑆 → (𝑁‘𝑠) ⊊ (𝑁‘𝑆)) → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆)))) |
| 22 | 14, 21 | mpd 15 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 → (𝑁‘𝑇) ⊊ (𝑁‘𝑆))) |
| 23 | 9, 22 | mtod 198 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ⊊ 𝑆) |
| 24 | sspss 4068 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) | |
| 25 | 4, 24 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆)) |
| 26 | 25 | ord 864 | . . 3 ⊢ (𝜑 → (¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆)) |
| 27 | 23, 26 | mpd 15 | . 2 ⊢ (𝜑 → 𝑇 = 𝑆) |
| 28 | 27 | eqcomd 2736 | 1 ⊢ (𝜑 → 𝑆 = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ⊊ wpss 3918 ‘cfv 6514 Moorecmre 17550 mrClscmrc 17551 mrIndcmri 17552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-mre 17554 df-mrc 17555 df-mri 17556 |
| This theorem is referenced by: mreexexlem3d 17614 acsmap2d 18521 |
| Copyright terms: Public domain | W3C validator |