MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrcd Structured version   Visualization version   GIF version

Theorem mrissmrcd 17349
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17336, and so are equal by mrieqv2d 17348.) (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissmrcd.2 𝑁 = (mrCls‘𝐴)
mrissmrcd.3 𝐼 = (mrInd‘𝐴)
mrissmrcd.4 (𝜑𝑆 ⊆ (𝑁𝑇))
mrissmrcd.5 (𝜑𝑇𝑆)
mrissmrcd.6 (𝜑𝑆𝐼)
Assertion
Ref Expression
mrissmrcd (𝜑𝑆 = 𝑇)

Proof of Theorem mrissmrcd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 mrissmrcd.1 . . . . . 6 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrissmrcd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
3 mrissmrcd.4 . . . . . 6 (𝜑𝑆 ⊆ (𝑁𝑇))
4 mrissmrcd.5 . . . . . 6 (𝜑𝑇𝑆)
51, 2, 3, 4mressmrcd 17336 . . . . 5 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
6 pssne 4031 . . . . . . 7 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑇) ≠ (𝑁𝑆))
76necomd 2999 . . . . . 6 ((𝑁𝑇) ⊊ (𝑁𝑆) → (𝑁𝑆) ≠ (𝑁𝑇))
87necon2bi 2974 . . . . 5 ((𝑁𝑆) = (𝑁𝑇) → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
95, 8syl 17 . . . 4 (𝜑 → ¬ (𝑁𝑇) ⊊ (𝑁𝑆))
10 mrissmrcd.6 . . . . . 6 (𝜑𝑆𝐼)
11 mrissmrcd.3 . . . . . . 7 𝐼 = (mrInd‘𝐴)
1211, 1, 10mrissd 17345 . . . . . . 7 (𝜑𝑆𝑋)
131, 2, 11, 12mrieqv2d 17348 . . . . . 6 (𝜑 → (𝑆𝐼 ↔ ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆))))
1410, 13mpbid 231 . . . . 5 (𝜑 → ∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)))
1510, 4ssexd 5248 . . . . . 6 (𝜑𝑇 ∈ V)
16 simpr 485 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → 𝑠 = 𝑇)
1716psseq1d 4027 . . . . . . 7 ((𝜑𝑠 = 𝑇) → (𝑠𝑆𝑇𝑆))
1816fveq2d 6778 . . . . . . . 8 ((𝜑𝑠 = 𝑇) → (𝑁𝑠) = (𝑁𝑇))
1918psseq1d 4027 . . . . . . 7 ((𝜑𝑠 = 𝑇) → ((𝑁𝑠) ⊊ (𝑁𝑆) ↔ (𝑁𝑇) ⊊ (𝑁𝑆)))
2017, 19imbi12d 345 . . . . . 6 ((𝜑𝑠 = 𝑇) → ((𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) ↔ (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2115, 20spcdv 3533 . . . . 5 (𝜑 → (∀𝑠(𝑠𝑆 → (𝑁𝑠) ⊊ (𝑁𝑆)) → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆))))
2214, 21mpd 15 . . . 4 (𝜑 → (𝑇𝑆 → (𝑁𝑇) ⊊ (𝑁𝑆)))
239, 22mtod 197 . . 3 (𝜑 → ¬ 𝑇𝑆)
24 sspss 4034 . . . . 5 (𝑇𝑆 ↔ (𝑇𝑆𝑇 = 𝑆))
254, 24sylib 217 . . . 4 (𝜑 → (𝑇𝑆𝑇 = 𝑆))
2625ord 861 . . 3 (𝜑 → (¬ 𝑇𝑆𝑇 = 𝑆))
2723, 26mpd 15 . 2 (𝜑𝑇 = 𝑆)
2827eqcomd 2744 1 (𝜑𝑆 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wal 1537   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  wpss 3888  cfv 6433  Moorecmre 17291  mrClscmrc 17292  mrIndcmri 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296  df-mri 17297
This theorem is referenced by:  mreexexlem3d  17355  acsmap2d  18273
  Copyright terms: Public domain W3C validator