Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spd | Structured version Visualization version GIF version |
Description: Specialization deduction, using implicit substitution. Based on the proof of spimed 2388. (Contributed by Emmett Weisz, 17-Jan-2020.) |
Ref | Expression |
---|---|
spd.1 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
spd.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spd | ⊢ (𝜒 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2383 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | spd.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimpd 228 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
4 | 1, 3 | eximii 1840 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
5 | 4 | 19.35i 1882 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
6 | spd.1 | . . 3 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
7 | 6 | 19.9d 2199 | . 2 ⊢ (𝜒 → (∃𝑥𝜓 → 𝜓)) |
8 | 5, 7 | syl5 34 | 1 ⊢ (𝜒 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |