|   | Mathbox for Emmett Weisz | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spd | Structured version Visualization version GIF version | ||
| Description: Specialization deduction, using implicit substitution. Based on the proof of spimed 2393. (Contributed by Emmett Weisz, 17-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| spd.1 | ⊢ (𝜒 → Ⅎ𝑥𝜓) | 
| spd.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| spd | ⊢ (𝜒 → (∀𝑥𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax6e 2388 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | spd.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpd 229 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| 4 | 1, 3 | eximii 1837 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | 
| 5 | 4 | 19.35i 1878 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | 
| 6 | spd.1 | . . 3 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 7 | 6 | 19.9d 2203 | . 2 ⊢ (𝜒 → (∃𝑥𝜓 → 𝜓)) | 
| 8 | 5, 7 | syl5 34 | 1 ⊢ (𝜒 → (∀𝑥𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |