Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunordi Structured version   Visualization version   GIF version

Theorem iunordi 49670
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. (Contributed by Emmett Weisz, 3-Nov-2019.)
Hypothesis
Ref Expression
iunordi.B Ord 𝐵
Assertion
Ref Expression
iunordi Ord 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunordi
StepHypRef Expression
1 iunord 49669 . 2 (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
2 iunordi.B . . 3 Ord 𝐵
32a1i 11 . 2 (𝑥𝐴 → Ord 𝐵)
41, 3mprg 3051 1 Ord 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   ciun 4958  Ord word 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator