Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunordi Structured version   Visualization version   GIF version

Theorem iunordi 48159
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. (Contributed by Emmett Weisz, 3-Nov-2019.)
Hypothesis
Ref Expression
iunordi.B Ord 𝐵
Assertion
Ref Expression
iunordi Ord 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunordi
StepHypRef Expression
1 iunord 48158 . 2 (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
2 iunordi.B . . 3 Ord 𝐵
32a1i 11 . 2 (𝑥𝐴 → Ord 𝐵)
41, 3mprg 3063 1 Ord 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2098   ciun 4998  Ord word 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-tr 5268  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-ord 6375  df-on 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator