Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunordi Structured version   Visualization version   GIF version

Theorem iunordi 48908
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. (Contributed by Emmett Weisz, 3-Nov-2019.)
Hypothesis
Ref Expression
iunordi.B Ord 𝐵
Assertion
Ref Expression
iunordi Ord 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunordi
StepHypRef Expression
1 iunord 48907 . 2 (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
2 iunordi.B . . 3 Ord 𝐵
32a1i 11 . 2 (𝑥𝐴 → Ord 𝐵)
41, 3mprg 3065 1 Ord 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106   ciun 4996  Ord word 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator