![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > spcdvw | Structured version Visualization version GIF version |
Description: A version of spcdv 3597 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.) |
Ref | Expression |
---|---|
spcdvw.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcdvw.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcdvw | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcdvw.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜒)) |
3 | 2 | ax-gen 1794 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) |
4 | spcdvw.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2905 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimgfi1 3550 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
8 | 3, 4, 7 | mpsyl 68 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1779 df-nf 1783 df-cleq 2729 df-clel 2816 df-nfc 2892 |
This theorem is referenced by: setrec1lem4 49046 |
Copyright terms: Public domain | W3C validator |