![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > spcdvw | Structured version Visualization version GIF version |
Description: A version of spcdv 3492 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.) |
Ref | Expression |
---|---|
spcdvw.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcdvw.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcdvw | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcdvw.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 221 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜒)) |
3 | 2 | ax-gen 1839 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) |
4 | spcdvw.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1957 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2933 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimgft 3485 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
8 | 3, 4, 7 | mpsyl 68 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1599 = wceq 1601 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 |
This theorem is referenced by: setrec1lem4 43535 |
Copyright terms: Public domain | W3C validator |