Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spcdvw Structured version   Visualization version   GIF version

Theorem spcdvw 46271
Description: A version of spcdv 3523 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.)
Hypotheses
Ref Expression
spcdvw.1 (𝜑𝐴𝐵)
spcdvw.2 (𝑥 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
spcdvw (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcdvw
StepHypRef Expression
1 spcdvw.2 . . . 4 (𝑥 = 𝐴 → (𝜓𝜒))
21biimpd 228 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
32ax-gen 1799 . 2 𝑥(𝑥 = 𝐴 → (𝜓𝜒))
4 spcdvw.1 . 2 (𝜑𝐴𝐵)
5 nfv 1918 . . 3 𝑥𝜒
6 nfcv 2906 . . 3 𝑥𝐴
75, 6spcimgft 3516 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝜓𝜒)))
83, 4, 7mpsyl 68 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424
This theorem is referenced by:  setrec1lem4  46282
  Copyright terms: Public domain W3C validator