Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > spcdvw | Structured version Visualization version GIF version |
Description: A version of spcdv 3523 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.) |
Ref | Expression |
---|---|
spcdvw.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcdvw.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcdvw | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcdvw.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜒)) |
3 | 2 | ax-gen 1799 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) |
4 | spcdvw.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimgft 3516 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
8 | 3, 4, 7 | mpsyl 68 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 |
This theorem is referenced by: setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |