Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbiota1 Structured version   Visualization version   GIF version

Theorem sbiota1 39128
Description: Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbiota1 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))

Proof of Theorem sbiota1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2634 . . . 4 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
21biimpi 207 . . 3 (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
3 iota4 6078 . . 3 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
4 iotaval 6071 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
54eqcomd 2812 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → 𝑦 = (℩𝑥𝜑))
6 spsbim 2553 . . . . . . . 8 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
7 sbsbc 3637 . . . . . . . 8 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
8 sbsbc 3637 . . . . . . . 8 ([𝑦 / 𝑥]𝜓[𝑦 / 𝑥]𝜓)
96, 7, 83imtr3g 286 . . . . . . 7 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜓))
10 dfsbcq 3635 . . . . . . . 8 (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜑))
11 dfsbcq 3635 . . . . . . . 8 (𝑦 = (℩𝑥𝜑) → ([𝑦 / 𝑥]𝜓[(℩𝑥𝜑) / 𝑥]𝜓))
1210, 11imbi12d 335 . . . . . . 7 (𝑦 = (℩𝑥𝜑) → (([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜓) ↔ ([(℩𝑥𝜑) / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜓)))
139, 12syl5ib 235 . . . . . 6 (𝑦 = (℩𝑥𝜑) → (∀𝑥(𝜑𝜓) → ([(℩𝑥𝜑) / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜓)))
1413com23 86 . . . . 5 (𝑦 = (℩𝑥𝜑) → ([(℩𝑥𝜑) / 𝑥]𝜑 → (∀𝑥(𝜑𝜓) → [(℩𝑥𝜑) / 𝑥]𝜓)))
155, 14syl 17 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ([(℩𝑥𝜑) / 𝑥]𝜑 → (∀𝑥(𝜑𝜓) → [(℩𝑥𝜑) / 𝑥]𝜓)))
1615exlimiv 2021 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ([(℩𝑥𝜑) / 𝑥]𝜑 → (∀𝑥(𝜑𝜓) → [(℩𝑥𝜑) / 𝑥]𝜓)))
172, 3, 16sylc 65 . 2 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) → [(℩𝑥𝜑) / 𝑥]𝜓))
18 iotaexeu 39112 . . . . 5 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
1910, 11anbi12d 618 . . . . . . . 8 (𝑦 = (℩𝑥𝜑) → (([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜓) ↔ ([(℩𝑥𝜑) / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜓)))
2019imbi1d 332 . . . . . . 7 (𝑦 = (℩𝑥𝜑) → ((([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜓) → ∃𝑥(𝜑𝜓)) ↔ (([(℩𝑥𝜑) / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜓) → ∃𝑥(𝜑𝜓))))
21 sbcan 3676 . . . . . . . 8 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜓))
22 spesbc 3716 . . . . . . . 8 ([𝑦 / 𝑥](𝜑𝜓) → ∃𝑥(𝜑𝜓))
2321, 22sylbir 226 . . . . . . 7 (([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜓) → ∃𝑥(𝜑𝜓))
2420, 23vtoclg 3459 . . . . . 6 ((℩𝑥𝜑) ∈ V → (([(℩𝑥𝜑) / 𝑥]𝜑[(℩𝑥𝜑) / 𝑥]𝜓) → ∃𝑥(𝜑𝜓)))
2524expd 402 . . . . 5 ((℩𝑥𝜑) ∈ V → ([(℩𝑥𝜑) / 𝑥]𝜑 → ([(℩𝑥𝜑) / 𝑥]𝜓 → ∃𝑥(𝜑𝜓))))
2618, 3, 25sylc 65 . . . 4 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑥]𝜓 → ∃𝑥(𝜑𝜓)))
2726anc2li 547 . . 3 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑥]𝜓 → (∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))))
28 eupicka 2701 . . 3 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
2927, 28syl6 35 . 2 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑥]𝜓 → ∀𝑥(𝜑𝜓)))
3017, 29impbid 203 1 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wex 1859  [wsb 2060  wcel 2156  ∃!weu 2630  Vcvv 3391  [wsbc 3633  cio 6058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-v 3393  df-sbc 3634  df-un 3774  df-sn 4371  df-pr 4373  df-uni 4631  df-iota 6060
This theorem is referenced by:  sbaniota  39129
  Copyright terms: Public domain W3C validator