![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rexv | Structured version Visualization version GIF version |
Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
ss2rexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4065 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦 ∈ 𝐴 𝜑 → ∃𝑦 ∈ 𝐵 𝜑)) | |
2 | 1 | reximdv 3168 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
3 | ssrexv 4065 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) | |
4 | 2, 3 | syld 47 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3068 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-rex 3069 df-ss 3980 |
This theorem is referenced by: prpair 47426 grtriprop 47846 |
Copyright terms: Public domain | W3C validator |