![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rexv | Structured version Visualization version GIF version |
Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
ss2rexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4046 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦 ∈ 𝐴 𝜑 → ∃𝑦 ∈ 𝐵 𝜑)) | |
2 | 1 | reximdv 3164 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
3 | ssrexv 4046 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) | |
4 | 2, 3 | syld 47 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3064 ⊆ wss 3943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rex 3065 df-v 3470 df-in 3950 df-ss 3960 |
This theorem is referenced by: prpair 46723 |
Copyright terms: Public domain | W3C validator |