MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rexv Structured version   Visualization version   GIF version

Theorem ss2rexv 3990
Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.)
Assertion
Ref Expression
ss2rexv (𝐴𝐵 → (∃𝑥𝐴𝑦𝐴 𝜑 → ∃𝑥𝐵𝑦𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ss2rexv
StepHypRef Expression
1 ssrexv 3988 . . 3 (𝐴𝐵 → (∃𝑦𝐴 𝜑 → ∃𝑦𝐵 𝜑))
21reximdv 3202 . 2 (𝐴𝐵 → (∃𝑥𝐴𝑦𝐴 𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑))
3 ssrexv 3988 . 2 (𝐴𝐵 → (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐵𝑦𝐵 𝜑))
42, 3syld 47 1 (𝐴𝐵 → (∃𝑥𝐴𝑦𝐴 𝜑 → ∃𝑥𝐵𝑦𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3065  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  prpair  44953
  Copyright terms: Public domain W3C validator