Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prpair Structured version   Visualization version   GIF version

Theorem prpair 45767
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.)
Hypothesis
Ref Expression
prpair.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
prpair (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Distinct variable groups:   𝑥,𝑉   𝑉,𝑎,𝑏   𝑥,𝑋   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑃(𝑥,𝑎,𝑏)

Proof of Theorem prpair
StepHypRef Expression
1 prpair.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21eleq2i 2830 . 2 (𝑋𝑃𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3 fveqeq2 6856 . . 3 (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2))
43elrab 3650 . 2 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
5 hash2prb 14378 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏})))
6 elpwi 4572 . . . . . 6 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
7 ancom 462 . . . . . . . 8 ((𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
872rexbii 3129 . . . . . . 7 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98biimpi 215 . . . . . 6 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
10 ss2rexv 4018 . . . . . 6 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
116, 9, 10syl2im 40 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
125, 11sylbid 239 . . . 4 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312imp 408 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
14 prelpwi 5409 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
1514adantr 482 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
16 hashprg 14302 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
1716biimpd 228 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
1817adantld 492 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (♯‘{𝑎, 𝑏}) = 2))
1918imp 408 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (♯‘{𝑎, 𝑏}) = 2)
20 eleq1 2826 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
21 fveqeq2 6856 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
2220, 21anbi12d 632 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2322adantr 482 . . . . . . 7 ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2423adantl 483 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2515, 19, 24mpbir2and 712 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2625ex 414 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)))
2726rexlimivv 3197 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2813, 27impbii 208 . 2 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
292, 4, 283bitri 297 1 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2944  wrex 3074  {crab 3410  wss 3915  𝒫 cpw 4565  {cpr 4593  cfv 6501  2c2 12215  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  prproropf1olem2  45770  prproropf1olem4  45772
  Copyright terms: Public domain W3C validator