Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prpair Structured version   Visualization version   GIF version

Theorem prpair 45218
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.)
Hypothesis
Ref Expression
prpair.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
prpair (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Distinct variable groups:   𝑥,𝑉   𝑉,𝑎,𝑏   𝑥,𝑋   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑃(𝑥,𝑎,𝑏)

Proof of Theorem prpair
StepHypRef Expression
1 prpair.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21eleq2i 2829 . 2 (𝑋𝑃𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3 fveqeq2 6821 . . 3 (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2))
43elrab 3634 . 2 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
5 hash2prb 14265 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏})))
6 elpwi 4552 . . . . . 6 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
7 ancom 461 . . . . . . . 8 ((𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
872rexbii 3125 . . . . . . 7 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98biimpi 215 . . . . . 6 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
10 ss2rexv 4000 . . . . . 6 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
116, 9, 10syl2im 40 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
125, 11sylbid 239 . . . 4 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312imp 407 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
14 prelpwi 5382 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
1514adantr 481 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
16 hashprg 14189 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
1716biimpd 228 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
1817adantld 491 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (♯‘{𝑎, 𝑏}) = 2))
1918imp 407 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (♯‘{𝑎, 𝑏}) = 2)
20 eleq1 2825 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
21 fveqeq2 6821 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
2220, 21anbi12d 631 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2322adantr 481 . . . . . . 7 ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2423adantl 482 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2515, 19, 24mpbir2and 710 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2625ex 413 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)))
2726rexlimivv 3193 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2813, 27impbii 208 . 2 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
292, 4, 283bitri 296 1 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  wrex 3071  {crab 3404  wss 3897  𝒫 cpw 4545  {cpr 4573  cfv 6466  2c2 12108  chash 14124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-oadd 8350  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-dju 9737  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-n0 12314  df-z 12400  df-uz 12663  df-fz 13320  df-hash 14125
This theorem is referenced by:  prproropf1olem2  45221  prproropf1olem4  45223
  Copyright terms: Public domain W3C validator