![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prpair | Structured version Visualization version GIF version |
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
prpair.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
prpair | ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpair.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | 1 | eleq2i 2826 | . 2 ⊢ (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
3 | fveqeq2 6901 | . . 3 ⊢ (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2)) | |
4 | 3 | elrab 3684 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
5 | hash2prb 14433 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}))) | |
6 | elpwi 4610 | . . . . . 6 ⊢ (𝑋 ∈ 𝒫 𝑉 → 𝑋 ⊆ 𝑉) | |
7 | ancom 462 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | |
8 | 7 | 2rexbii 3130 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
9 | 8 | biimpi 215 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
10 | ss2rexv 4054 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
12 | 5, 11 | sylbid 239 | . . . 4 ⊢ (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
13 | 12 | imp 408 | . . 3 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
14 | prelpwi 5448 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉) | |
15 | 14 | adantr 482 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉) |
16 | hashprg 14355 | . . . . . . . . 9 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
17 | 16 | biimpd 228 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2)) |
18 | 17 | adantld 492 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (♯‘{𝑎, 𝑏}) = 2)) |
19 | 18 | imp 408 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (♯‘{𝑎, 𝑏}) = 2) |
20 | eleq1 2822 | . . . . . . . . 9 ⊢ (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
21 | fveqeq2 6901 | . . . . . . . . 9 ⊢ (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
22 | 20, 21 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
23 | 22 | adantr 482 | . . . . . . 7 ⊢ ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
24 | 23 | adantl 483 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
25 | 15, 19, 24 | mpbir2and 712 | . . . . 5 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
26 | 25 | ex 414 | . . . 4 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))) |
27 | 26 | rexlimivv 3200 | . . 3 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
28 | 13, 27 | impbii 208 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
29 | 2, 4, 28 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 {crab 3433 ⊆ wss 3949 𝒫 cpw 4603 {cpr 4631 ‘cfv 6544 2c2 12267 ♯chash 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: prproropf1olem2 46172 prproropf1olem4 46174 |
Copyright terms: Public domain | W3C validator |