![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prpair | Structured version Visualization version GIF version |
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
prpair.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
prpair | ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpair.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | 1 | eleq2i 2851 | . 2 ⊢ (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
3 | fveqeq2 6457 | . . 3 ⊢ (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2)) | |
4 | 3 | elrab 3572 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
5 | hash2prb 13572 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}))) | |
6 | elpwi 4389 | . . . . . 6 ⊢ (𝑋 ∈ 𝒫 𝑉 → 𝑋 ⊆ 𝑉) | |
7 | ancom 454 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | |
8 | 7 | 2rexbii 3225 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
9 | 8 | biimpi 208 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
10 | ss2rexv 3888 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
12 | 5, 11 | sylbid 232 | . . . 4 ⊢ (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
13 | 12 | imp 397 | . . 3 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
14 | prelpwi 5149 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉) | |
15 | 14 | adantr 474 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉) |
16 | hashprg 13501 | . . . . . . . . 9 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
17 | 16 | biimpd 221 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2)) |
18 | 17 | adantld 486 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (♯‘{𝑎, 𝑏}) = 2)) |
19 | 18 | imp 397 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (♯‘{𝑎, 𝑏}) = 2) |
20 | eleq1 2847 | . . . . . . . . 9 ⊢ (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
21 | fveqeq2 6457 | . . . . . . . . 9 ⊢ (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
22 | 20, 21 | anbi12d 624 | . . . . . . . 8 ⊢ (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
23 | 22 | adantr 474 | . . . . . . 7 ⊢ ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
24 | 23 | adantl 475 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
25 | 15, 19, 24 | mpbir2and 703 | . . . . 5 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
26 | 25 | ex 403 | . . . 4 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))) |
27 | 26 | rexlimivv 3219 | . . 3 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
28 | 13, 27 | impbii 201 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
29 | 2, 4, 28 | 3bitri 289 | 1 ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∃wrex 3091 {crab 3094 ⊆ wss 3792 𝒫 cpw 4379 {cpr 4400 ‘cfv 6137 2c2 11434 ♯chash 13439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-n0 11647 df-z 11733 df-uz 11997 df-fz 12648 df-hash 13440 |
This theorem is referenced by: prproropf1olem2 42453 prproropf1olem4 42455 |
Copyright terms: Public domain | W3C validator |