Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prpair Structured version   Visualization version   GIF version

Theorem prpair 44953
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.)
Hypothesis
Ref Expression
prpair.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
prpair (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Distinct variable groups:   𝑥,𝑉   𝑉,𝑎,𝑏   𝑥,𝑋   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑃(𝑥,𝑎,𝑏)

Proof of Theorem prpair
StepHypRef Expression
1 prpair.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21eleq2i 2830 . 2 (𝑋𝑃𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3 fveqeq2 6783 . . 3 (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2))
43elrab 3624 . 2 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
5 hash2prb 14186 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏})))
6 elpwi 4542 . . . . . 6 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
7 ancom 461 . . . . . . . 8 ((𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
872rexbii 3182 . . . . . . 7 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98biimpi 215 . . . . . 6 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
10 ss2rexv 3990 . . . . . 6 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
116, 9, 10syl2im 40 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
125, 11sylbid 239 . . . 4 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312imp 407 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
14 prelpwi 5363 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
1514adantr 481 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
16 hashprg 14110 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
1716biimpd 228 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
1817adantld 491 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (♯‘{𝑎, 𝑏}) = 2))
1918imp 407 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (♯‘{𝑎, 𝑏}) = 2)
20 eleq1 2826 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
21 fveqeq2 6783 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
2220, 21anbi12d 631 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2322adantr 481 . . . . . . 7 ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2423adantl 482 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2515, 19, 24mpbir2and 710 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2625ex 413 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)))
2726rexlimivv 3221 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2813, 27impbii 208 . 2 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
292, 4, 283bitri 297 1 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  wss 3887  𝒫 cpw 4533  {cpr 4563  cfv 6433  2c2 12028  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  prproropf1olem2  44956  prproropf1olem4  44958
  Copyright terms: Public domain W3C validator