![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prpair | Structured version Visualization version GIF version |
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
prpair.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
prpair | ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpair.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
3 | fveqeq2 6916 | . . 3 ⊢ (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2)) | |
4 | 3 | elrab 3695 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
5 | hash2prb 14508 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}))) | |
6 | elpwi 4612 | . . . . . 6 ⊢ (𝑋 ∈ 𝒫 𝑉 → 𝑋 ⊆ 𝑉) | |
7 | ancom 460 | . . . . . . . 8 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) | |
8 | 7 | 2rexbii 3127 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
9 | 8 | biimpi 216 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
10 | ss2rexv 4067 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑋 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
12 | 5, 11 | sylbid 240 | . . . 4 ⊢ (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
13 | 12 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
14 | prelpwi 5458 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉) | |
15 | 14 | adantr 480 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉) |
16 | hashprg 14431 | . . . . . . . . 9 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
17 | 16 | biimpd 229 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 ≠ 𝑏 → (♯‘{𝑎, 𝑏}) = 2)) |
18 | 17 | adantld 490 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (♯‘{𝑎, 𝑏}) = 2)) |
19 | 18 | imp 406 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (♯‘{𝑎, 𝑏}) = 2) |
20 | eleq1 2827 | . . . . . . . . 9 ⊢ (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
21 | fveqeq2 6916 | . . . . . . . . 9 ⊢ (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
22 | 20, 21 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
23 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
24 | 23 | adantl 481 | . . . . . 6 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2))) |
25 | 15, 19, 24 | mpbir2and 713 | . . . . 5 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
26 | 25 | ex 412 | . . . 4 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))) |
27 | 26 | rexlimivv 3199 | . . 3 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)) |
28 | 13, 27 | impbii 209 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
29 | 2, 4, 28 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝑃 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ⊆ wss 3963 𝒫 cpw 4605 {cpr 4633 ‘cfv 6563 2c2 12319 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: prproropf1olem2 47429 prproropf1olem4 47431 |
Copyright terms: Public domain | W3C validator |