Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prpair Structured version   Visualization version   GIF version

Theorem prpair 46722
Description: Characterization of a proper pair: A class is a proper pair iff it consists of exactly two different sets. (Contributed by AV, 11-Mar-2023.)
Hypothesis
Ref Expression
prpair.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
prpair (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Distinct variable groups:   𝑥,𝑉   𝑉,𝑎,𝑏   𝑥,𝑋   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑃(𝑥,𝑎,𝑏)

Proof of Theorem prpair
StepHypRef Expression
1 prpair.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21eleq2i 2819 . 2 (𝑋𝑃𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
3 fveqeq2 6893 . . 3 (𝑥 = 𝑋 → ((♯‘𝑥) = 2 ↔ (♯‘𝑋) = 2))
43elrab 3678 . 2 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
5 hash2prb 14437 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏})))
6 elpwi 4604 . . . . . 6 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
7 ancom 460 . . . . . . . 8 ((𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
872rexbii 3123 . . . . . . 7 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98biimpi 215 . . . . . 6 (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
10 ss2rexv 4048 . . . . . 6 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
116, 9, 10syl2im 40 . . . . 5 (𝑋 ∈ 𝒫 𝑉 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑋 = {𝑎, 𝑏}) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
125, 11sylbid 239 . . . 4 (𝑋 ∈ 𝒫 𝑉 → ((♯‘𝑋) = 2 → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312imp 406 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) → ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
14 prelpwi 5440 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
1514adantr 480 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑉)
16 hashprg 14358 . . . . . . . . 9 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
1716biimpd 228 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
1817adantld 490 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (♯‘{𝑎, 𝑏}) = 2))
1918imp 406 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (♯‘{𝑎, 𝑏}) = 2)
20 eleq1 2815 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → (𝑋 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
21 fveqeq2 6893 . . . . . . . . 9 (𝑋 = {𝑎, 𝑏} → ((♯‘𝑋) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
2220, 21anbi12d 630 . . . . . . . 8 (𝑋 = {𝑎, 𝑏} → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2322adantr 480 . . . . . . 7 ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2423adantl 481 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ({𝑎, 𝑏} ∈ 𝒫 𝑉 ∧ (♯‘{𝑎, 𝑏}) = 2)))
2515, 19, 24mpbir2and 710 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2625ex 412 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2)))
2726rexlimivv 3193 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2))
2813, 27impbii 208 . 2 ((𝑋 ∈ 𝒫 𝑉 ∧ (♯‘𝑋) = 2) ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
292, 4, 283bitri 297 1 (𝑋𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑋 = {𝑎, 𝑏} ∧ 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  wrex 3064  {crab 3426  wss 3943  𝒫 cpw 4597  {cpr 4625  cfv 6536  2c2 12268  chash 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-oadd 8468  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-hash 14294
This theorem is referenced by:  prproropf1olem2  46725  prproropf1olem4  46727
  Copyright terms: Public domain W3C validator