MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ralv Structured version   Visualization version   GIF version

Theorem ss2ralv 3985
Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.)
Assertion
Ref Expression
ss2ralv (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ss2ralv
StepHypRef Expression
1 ssralv 3983 . . 3 (𝐴𝐵 → (∀𝑦𝐵 𝜑 → ∀𝑦𝐴 𝜑))
21ralimdv 3103 . 2 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 𝜑 → ∀𝑥𝐵𝑦𝐴 𝜑))
3 ssralv 3983 . 2 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐴 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑))
42, 3syld 47 1 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3063  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  poss  5496  soss  5514  dffi3  9120  isercolllem1  15304  cfilres  24365  lgsdchr  26408  dffltz  40387
  Copyright terms: Public domain W3C validator