MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ralv Structured version   Visualization version   GIF version

Theorem ss2ralv 4017
Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.)
Assertion
Ref Expression
ss2ralv (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ss2ralv
StepHypRef Expression
1 ssralv 4015 . . 3 (𝐴𝐵 → (∀𝑦𝐵 𝜑 → ∀𝑦𝐴 𝜑))
21ralimdv 3147 . 2 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 𝜑 → ∀𝑥𝐵𝑦𝐴 𝜑))
3 ssralv 4015 . 2 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐴 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑))
42, 3syld 47 1 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3044  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3045  df-ss 3931
This theorem is referenced by:  poss  5548  soss  5566  dffi3  9382  isercolllem1  15631  cfilres  25196  lgsdchr  27266  dffltz  42622
  Copyright terms: Public domain W3C validator