![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2ralv | Structured version Visualization version GIF version |
Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
ss2ralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 4077 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐴 𝜑)) | |
2 | 1 | ralimdv 3175 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑)) |
3 | ssralv 4077 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | |
4 | 2, 3 | syld 47 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3067 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 df-ss 3993 |
This theorem is referenced by: poss 5609 soss 5628 dffi3 9500 isercolllem1 15713 cfilres 25349 lgsdchr 27417 dffltz 42589 |
Copyright terms: Public domain | W3C validator |