| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2ralv | Structured version Visualization version GIF version | ||
| Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
| Ref | Expression |
|---|---|
| ss2ralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 4003 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐴 𝜑)) | |
| 2 | 1 | ralimdv 3146 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑)) |
| 3 | ssralv 4003 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | |
| 4 | 2, 3 | syld 47 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3047 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 df-ss 3919 |
| This theorem is referenced by: poss 5526 soss 5544 dffi3 9315 isercolllem1 15572 cfilres 25224 lgsdchr 27294 dffltz 42673 |
| Copyright terms: Public domain | W3C validator |