|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ss2ralv | Structured version Visualization version GIF version | ||
| Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| ss2ralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssralv 4051 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐴 𝜑)) | |
| 2 | 1 | ralimdv 3168 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑)) | 
| 3 | ssralv 4051 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | |
| 4 | 2, 3 | syld 47 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wral 3060 ⊆ wss 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3061 df-ss 3967 | 
| This theorem is referenced by: poss 5593 soss 5611 dffi3 9472 isercolllem1 15702 cfilres 25331 lgsdchr 27400 dffltz 42649 | 
| Copyright terms: Public domain | W3C validator |