![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2ralv | Structured version Visualization version GIF version |
Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023.) |
Ref | Expression |
---|---|
ss2ralv | ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 4011 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐴 𝜑)) | |
2 | 1 | ralimdv 3163 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑)) |
3 | ssralv 4011 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) | |
4 | 2, 3 | syld 47 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3061 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-v 3446 df-in 3918 df-ss 3928 |
This theorem is referenced by: poss 5548 soss 5566 dffi3 9372 isercolllem1 15555 cfilres 24676 lgsdchr 26719 dffltz 41015 |
Copyright terms: Public domain | W3C validator |