|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssdifsym | Structured version Visualization version GIF version | ||
| Description: Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| ssdifsym | ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssdifim 4273 | . . . 4 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝑉 → (𝐵 = (𝑉 ∖ 𝐴) → 𝐴 = (𝑉 ∖ 𝐵))) | 
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) → 𝐴 = (𝑉 ∖ 𝐵))) | 
| 4 | ssdifim 4273 | . . . 4 ⊢ ((𝐵 ⊆ 𝑉 ∧ 𝐴 = (𝑉 ∖ 𝐵)) → 𝐵 = (𝑉 ∖ 𝐴)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝐵 ⊆ 𝑉 → (𝐴 = (𝑉 ∖ 𝐵) → 𝐵 = (𝑉 ∖ 𝐴))) | 
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐴 = (𝑉 ∖ 𝐵) → 𝐵 = (𝑉 ∖ 𝐴))) | 
| 7 | 3, 6 | impbid 212 | 1 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∖ cdif 3948 ⊆ wss 3951 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 | 
| This theorem is referenced by: zarcls 33873 | 
| Copyright terms: Public domain | W3C validator |