Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls Structured version   Visualization version   GIF version

Theorem zarcls 31227
 Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zarcls (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Distinct variable groups:   𝑃,𝑖,𝑗,𝑠   𝑅,𝑖,𝑗,𝑠   𝑉,𝑠
Allowed substitution hints:   𝑆(𝑖,𝑗,𝑠)   𝐽(𝑖,𝑗,𝑠)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls
StepHypRef Expression
1 zartop.2 . . 3 𝐽 = (TopOpen‘𝑆)
2 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
3 eqid 2801 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 zarcls.1 . . . 4 𝑃 = (PrmIdeal‘𝑅)
5 eqid 2801 . . . 4 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
62, 3, 4, 5rspectopn 31220 . . 3 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
71, 6eqtr4id 2855 . 2 (𝑅 ∈ Ring → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
8 nfv 1915 . . 3 𝑠 𝑅 ∈ Ring
9 nfcv 2958 . . 3 𝑠ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
10 nfrab1 3340 . . 3 𝑠{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
11 notrab 4235 . . . . . . . . . 10 (𝑃 ∖ {𝑗𝑃𝑖𝑗}) = {𝑗𝑃 ∣ ¬ 𝑖𝑗}
1211eqeq2i 2814 . . . . . . . . 9 (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ 𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
13 ssrab2 4010 . . . . . . . . . . . 12 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
1413a1i 11 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃 → {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
15 elpwi 4509 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃𝑠𝑃)
16 ssdifsym 4193 . . . . . . . . . . 11 (({𝑗𝑃𝑖𝑗} ⊆ 𝑃𝑠𝑃) → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
1714, 15, 16syl2anc 587 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
18 eqcom 2808 . . . . . . . . . 10 ({𝑗𝑃𝑖𝑗} = (𝑃𝑠) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗})
1917, 18syl6bb 290 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2012, 19bitr3id 288 . . . . . . . 8 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2120ad2antlr 726 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2221rexbidva 3258 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
23 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
244fvexi 6663 . . . . . . . 8 𝑃 ∈ V
2524rabex 5202 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ V
2623, 25elrnmpti 5800 . . . . . 6 ((𝑃𝑠) ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗})
2722, 26syl6bbr 292 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) ∈ ran 𝑉))
2827pm5.32da 582 . . . 4 (𝑅 ∈ Ring → ((𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉)))
29 ssrab2 4010 . . . . . . . . . 10 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃
3024elpw2 5215 . . . . . . . . . 10 ({𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃)
3129, 30mpbir 234 . . . . . . . . 9 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
3231rgenw 3121 . . . . . . . 8 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
33 eqid 2801 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
3433rnmptss 6867 . . . . . . . 8 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃)
3532, 34ax-mp 5 . . . . . . 7 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃
3635sseli 3914 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) → 𝑠 ∈ 𝒫 𝑃)
3736pm4.71ri 564 . . . . 5 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})))
38 vex 3447 . . . . . . 7 𝑠 ∈ V
3933elrnmpt 5796 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4038, 39ax-mp 5 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
4140anbi2i 625 . . . . 5 ((𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4237, 41bitri 278 . . . 4 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
43 rabid 3334 . . . 4 (𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉))
4428, 42, 433bitr4g 317 . . 3 (𝑅 ∈ Ring → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ 𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
458, 9, 10, 44eqrd 3937 . 2 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
467, 45eqtrd 2836 1 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  {crab 3113  Vcvv 3444   ∖ cdif 3881   ⊆ wss 3884  𝒫 cpw 4500   ↦ cmpt 5113  ran crn 5524  ‘cfv 6328  TopOpenctopn 16690  Ringcrg 19293  LIdealclidl 19938  PrmIdealcprmidl 31018  Speccrspec 31215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-tset 16579  df-ple 16580  df-rest 16691  df-topn 16692  df-prmidl 31019  df-idlsrg 31054  df-rspec 31216 This theorem is referenced by:  zartopn  31228
 Copyright terms: Public domain W3C validator