Proof of Theorem zarcls
Step | Hyp | Ref
| Expression |
1 | | zartop.2 |
. . 3
⊢ 𝐽 = (TopOpen‘𝑆) |
2 | | zartop.1 |
. . . 4
⊢ 𝑆 = (Spec‘𝑅) |
3 | | eqid 2738 |
. . . 4
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
4 | | zarcls.1 |
. . . 4
⊢ 𝑃 = (PrmIdeal‘𝑅) |
5 | | eqid 2738 |
. . . 4
⊢ ran
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) |
6 | 2, 3, 4, 5 | rspectopn 31719 |
. . 3
⊢ (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) = (TopOpen‘𝑆)) |
7 | 1, 6 | eqtr4id 2798 |
. 2
⊢ (𝑅 ∈ Ring → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗})) |
8 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑠 𝑅 ∈ Ring |
9 | | nfcv 2906 |
. . 3
⊢
Ⅎ𝑠ran
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) |
10 | | nfrab1 3310 |
. . 3
⊢
Ⅎ𝑠{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} |
11 | | notrab 4242 |
. . . . . . . . . 10
⊢ (𝑃 ∖ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} |
12 | 11 | eqeq2i 2751 |
. . . . . . . . 9
⊢ (𝑠 = (𝑃 ∖ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) ↔ 𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) |
13 | | ssrab2 4009 |
. . . . . . . . . . . 12
⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 |
14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫 𝑃 → {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
15 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫 𝑃 → 𝑠 ⊆ 𝑃) |
16 | | ssdifsym 4194 |
. . . . . . . . . . 11
⊢ (({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ⊆ 𝑃 ∧ 𝑠 ⊆ 𝑃) → (𝑠 = (𝑃 ∖ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = (𝑃 ∖ 𝑠))) |
17 | 14, 15, 16 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) ↔ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = (𝑃 ∖ 𝑠))) |
18 | | eqcom 2745 |
. . . . . . . . . 10
⊢ ({𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} = (𝑃 ∖ 𝑠) ↔ (𝑃 ∖ 𝑠) = {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
19 | 17, 18 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) ↔ (𝑃 ∖ 𝑠) = {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗})) |
20 | 12, 19 | bitr3id 284 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝒫 𝑃 → (𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ↔ (𝑃 ∖ 𝑠) = {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗})) |
21 | 20 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ↔ (𝑃 ∖ 𝑠) = {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗})) |
22 | 21 | rexbidva 3224 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃 ∖ 𝑠) = {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗})) |
23 | | zarcls.2 |
. . . . . . 7
⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
24 | 4 | fvexi 6770 |
. . . . . . . 8
⊢ 𝑃 ∈ V |
25 | 24 | rabex 5251 |
. . . . . . 7
⊢ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗} ∈ V |
26 | 23, 25 | elrnmpti 5858 |
. . . . . 6
⊢ ((𝑃 ∖ 𝑠) ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃 ∖ 𝑠) = {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) |
27 | 22, 26 | bitr4di 288 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ↔ (𝑃 ∖ 𝑠) ∈ ran 𝑉)) |
28 | 27 | pm5.32da 578 |
. . . 4
⊢ (𝑅 ∈ Ring → ((𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃 ∖ 𝑠) ∈ ran 𝑉))) |
29 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ⊆ 𝑃 |
30 | 24 | elpw2 5264 |
. . . . . . . . . 10
⊢ ({𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 ↔ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ⊆ 𝑃) |
31 | 29, 30 | mpbir 230 |
. . . . . . . . 9
⊢ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
32 | 31 | rgenw 3075 |
. . . . . . . 8
⊢
∀𝑖 ∈
(LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 |
33 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) |
34 | 33 | rnmptss 6978 |
. . . . . . . 8
⊢
(∀𝑖 ∈
(LIdeal‘𝑅){𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗} ∈ 𝒫 𝑃 → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ⊆ 𝒫 𝑃) |
35 | 32, 34 | ax-mp 5 |
. . . . . . 7
⊢ ran
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ⊆ 𝒫 𝑃 |
36 | 35 | sseli 3913 |
. . . . . 6
⊢ (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) → 𝑠 ∈ 𝒫 𝑃) |
37 | 36 | pm4.71ri 560 |
. . . . 5
⊢ (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ 𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}))) |
38 | | vex 3426 |
. . . . . . 7
⊢ 𝑠 ∈ V |
39 | 33 | elrnmpt 5854 |
. . . . . . 7
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗})) |
40 | 38, 39 | ax-mp 5 |
. . . . . 6
⊢ (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) |
41 | 40 | anbi2i 622 |
. . . . 5
⊢ ((𝑠 ∈ 𝒫 𝑃 ∧ 𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗})) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗})) |
42 | 37, 41 | bitri 274 |
. . . 4
⊢ (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗})) |
43 | | rabid 3304 |
. . . 4
⊢ (𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉} ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃 ∖ 𝑠) ∈ ran 𝑉)) |
44 | 28, 42, 43 | 3bitr4g 313 |
. . 3
⊢ (𝑅 ∈ Ring → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ↔ 𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉})) |
45 | 8, 9, 10, 44 | eqrd 3936 |
. 2
⊢ (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |
46 | 7, 45 | eqtrd 2778 |
1
⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) |