Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls Structured version   Visualization version   GIF version

Theorem zarcls 32585
Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zarcls (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Distinct variable groups:   𝑃,𝑖,𝑗,𝑠   𝑅,𝑖,𝑗,𝑠   𝑉,𝑠
Allowed substitution hints:   𝑆(𝑖,𝑗,𝑠)   𝐽(𝑖,𝑗,𝑠)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls
StepHypRef Expression
1 zartop.2 . . 3 𝐽 = (TopOpen‘𝑆)
2 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
3 eqid 2731 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 zarcls.1 . . . 4 𝑃 = (PrmIdeal‘𝑅)
5 eqid 2731 . . . 4 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
62, 3, 4, 5rspectopn 32578 . . 3 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
71, 6eqtr4id 2790 . 2 (𝑅 ∈ Ring → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
8 nfv 1917 . . 3 𝑠 𝑅 ∈ Ring
9 nfcv 2902 . . 3 𝑠ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
10 nfrab1 3444 . . 3 𝑠{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
11 notrab 4298 . . . . . . . . . 10 (𝑃 ∖ {𝑗𝑃𝑖𝑗}) = {𝑗𝑃 ∣ ¬ 𝑖𝑗}
1211eqeq2i 2744 . . . . . . . . 9 (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ 𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
13 ssrab2 4064 . . . . . . . . . . . 12 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
1413a1i 11 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃 → {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
15 elpwi 4594 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃𝑠𝑃)
16 ssdifsym 4250 . . . . . . . . . . 11 (({𝑗𝑃𝑖𝑗} ⊆ 𝑃𝑠𝑃) → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
1714, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
18 eqcom 2738 . . . . . . . . . 10 ({𝑗𝑃𝑖𝑗} = (𝑃𝑠) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗})
1917, 18bitrdi 286 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2012, 19bitr3id 284 . . . . . . . 8 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2120ad2antlr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2221rexbidva 3175 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
23 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
244fvexi 6883 . . . . . . . 8 𝑃 ∈ V
2524rabex 5316 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ V
2623, 25elrnmpti 5942 . . . . . 6 ((𝑃𝑠) ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗})
2722, 26bitr4di 288 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) ∈ ran 𝑉))
2827pm5.32da 579 . . . 4 (𝑅 ∈ Ring → ((𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉)))
29 ssrab2 4064 . . . . . . . . . 10 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃
3024elpw2 5329 . . . . . . . . . 10 ({𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃)
3129, 30mpbir 230 . . . . . . . . 9 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
3231rgenw 3064 . . . . . . . 8 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
33 eqid 2731 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
3433rnmptss 7097 . . . . . . . 8 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃)
3532, 34ax-mp 5 . . . . . . 7 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃
3635sseli 3965 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) → 𝑠 ∈ 𝒫 𝑃)
3736pm4.71ri 561 . . . . 5 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})))
38 vex 3470 . . . . . . 7 𝑠 ∈ V
3933elrnmpt 5938 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4038, 39ax-mp 5 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
4140anbi2i 623 . . . . 5 ((𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4237, 41bitri 274 . . . 4 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
43 rabid 3445 . . . 4 (𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉))
4428, 42, 433bitr4g 313 . . 3 (𝑅 ∈ Ring → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ 𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
458, 9, 10, 44eqrd 3988 . 2 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
467, 45eqtrd 2771 1 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  {crab 3425  Vcvv 3466  cdif 3932  wss 3935  𝒫 cpw 4587  cmpt 5215  ran crn 5661  cfv 6523  TopOpenctopn 17339  Ringcrg 20000  LIdealclidl 20712  PrmIdealcprmidl 32324  Speccrspec 32573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5269  ax-sep 5283  ax-nul 5290  ax-pow 5347  ax-pr 5411  ax-un 7699  ax-cnex 11138  ax-resscn 11139  ax-1cn 11140  ax-icn 11141  ax-addcl 11142  ax-addrcl 11143  ax-mulcl 11144  ax-mulrcl 11145  ax-mulcom 11146  ax-addass 11147  ax-mulass 11148  ax-distr 11149  ax-i2m1 11150  ax-1ne0 11151  ax-1rid 11152  ax-rnegex 11153  ax-rrecex 11154  ax-cnre 11155  ax-pre-lttri 11156  ax-pre-lttrn 11157  ax-pre-ltadd 11158  ax-pre-mulgt0 11159
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3372  df-rab 3426  df-v 3468  df-sbc 3765  df-csb 3881  df-dif 3938  df-un 3940  df-in 3942  df-ss 3952  df-pss 3954  df-nul 4310  df-if 4514  df-pw 4589  df-sn 4614  df-pr 4616  df-tp 4618  df-op 4620  df-uni 4893  df-iun 4983  df-br 5133  df-opab 5195  df-mpt 5216  df-tr 5250  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5615  df-we 5617  df-xp 5666  df-rel 5667  df-cnv 5668  df-co 5669  df-dm 5670  df-rn 5671  df-res 5672  df-ima 5673  df-pred 6280  df-ord 6347  df-on 6348  df-lim 6349  df-suc 6350  df-iota 6475  df-fun 6525  df-fn 6526  df-f 6527  df-f1 6528  df-fo 6529  df-f1o 6530  df-fv 6531  df-riota 7340  df-ov 7387  df-oprab 7388  df-mpo 7389  df-om 7830  df-1st 7948  df-2nd 7949  df-frecs 8239  df-wrecs 8270  df-recs 8344  df-rdg 8383  df-1o 8439  df-er 8677  df-en 8913  df-dom 8914  df-sdom 8915  df-fin 8916  df-pnf 11222  df-mnf 11223  df-xr 11224  df-ltxr 11225  df-le 11226  df-sub 11418  df-neg 11419  df-nn 12185  df-2 12247  df-3 12248  df-4 12249  df-5 12250  df-6 12251  df-7 12252  df-8 12253  df-9 12254  df-n0 12445  df-z 12531  df-dec 12650  df-uz 12795  df-fz 13457  df-struct 17052  df-sets 17069  df-slot 17087  df-ndx 17099  df-base 17117  df-ress 17146  df-plusg 17182  df-mulr 17183  df-tset 17188  df-ple 17189  df-rest 17340  df-topn 17341  df-prmidl 32325  df-idlsrg 32360  df-rspec 32574
This theorem is referenced by:  zartopn  32586
  Copyright terms: Public domain W3C validator