Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls Structured version   Visualization version   GIF version

Theorem zarcls 33820
Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zarcls (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Distinct variable groups:   𝑃,𝑖,𝑗,𝑠   𝑅,𝑖,𝑗,𝑠   𝑉,𝑠
Allowed substitution hints:   𝑆(𝑖,𝑗,𝑠)   𝐽(𝑖,𝑗,𝑠)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls
StepHypRef Expression
1 zartop.2 . . 3 𝐽 = (TopOpen‘𝑆)
2 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
3 eqid 2740 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 zarcls.1 . . . 4 𝑃 = (PrmIdeal‘𝑅)
5 eqid 2740 . . . 4 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
62, 3, 4, 5rspectopn 33813 . . 3 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
71, 6eqtr4id 2799 . 2 (𝑅 ∈ Ring → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
8 nfv 1913 . . 3 𝑠 𝑅 ∈ Ring
9 nfcv 2908 . . 3 𝑠ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
10 nfrab1 3464 . . 3 𝑠{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
11 notrab 4341 . . . . . . . . . 10 (𝑃 ∖ {𝑗𝑃𝑖𝑗}) = {𝑗𝑃 ∣ ¬ 𝑖𝑗}
1211eqeq2i 2753 . . . . . . . . 9 (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ 𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
13 ssrab2 4103 . . . . . . . . . . . 12 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
1413a1i 11 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃 → {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
15 elpwi 4629 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃𝑠𝑃)
16 ssdifsym 4293 . . . . . . . . . . 11 (({𝑗𝑃𝑖𝑗} ⊆ 𝑃𝑠𝑃) → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
1714, 15, 16syl2anc 583 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
18 eqcom 2747 . . . . . . . . . 10 ({𝑗𝑃𝑖𝑗} = (𝑃𝑠) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗})
1917, 18bitrdi 287 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2012, 19bitr3id 285 . . . . . . . 8 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2120ad2antlr 726 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2221rexbidva 3183 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
23 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
244fvexi 6934 . . . . . . . 8 𝑃 ∈ V
2524rabex 5357 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ V
2623, 25elrnmpti 5985 . . . . . 6 ((𝑃𝑠) ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗})
2722, 26bitr4di 289 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) ∈ ran 𝑉))
2827pm5.32da 578 . . . 4 (𝑅 ∈ Ring → ((𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉)))
29 ssrab2 4103 . . . . . . . . . 10 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃
3024elpw2 5352 . . . . . . . . . 10 ({𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃)
3129, 30mpbir 231 . . . . . . . . 9 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
3231rgenw 3071 . . . . . . . 8 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
33 eqid 2740 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
3433rnmptss 7157 . . . . . . . 8 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃)
3532, 34ax-mp 5 . . . . . . 7 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃
3635sseli 4004 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) → 𝑠 ∈ 𝒫 𝑃)
3736pm4.71ri 560 . . . . 5 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})))
38 vex 3492 . . . . . . 7 𝑠 ∈ V
3933elrnmpt 5981 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4038, 39ax-mp 5 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
4140anbi2i 622 . . . . 5 ((𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4237, 41bitri 275 . . . 4 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
43 rabid 3465 . . . 4 (𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉))
4428, 42, 433bitr4g 314 . . 3 (𝑅 ∈ Ring → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ 𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
458, 9, 10, 44eqrd 4028 . 2 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
467, 45eqtrd 2780 1 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622  cmpt 5249  ran crn 5701  cfv 6573  TopOpenctopn 17481  Ringcrg 20260  LIdealclidl 21239  PrmIdealcprmidl 33428  Speccrspec 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-rest 17482  df-topn 17483  df-prmidl 33429  df-idlsrg 33494  df-rspec 33809
This theorem is referenced by:  zartopn  33821
  Copyright terms: Public domain W3C validator