Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls Structured version   Visualization version   GIF version

Theorem zarcls 33882
Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zarcls (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Distinct variable groups:   𝑃,𝑖,𝑗,𝑠   𝑅,𝑖,𝑗,𝑠   𝑉,𝑠
Allowed substitution hints:   𝑆(𝑖,𝑗,𝑠)   𝐽(𝑖,𝑗,𝑠)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls
StepHypRef Expression
1 zartop.2 . . 3 𝐽 = (TopOpen‘𝑆)
2 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
3 eqid 2731 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 zarcls.1 . . . 4 𝑃 = (PrmIdeal‘𝑅)
5 eqid 2731 . . . 4 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
62, 3, 4, 5rspectopn 33875 . . 3 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
71, 6eqtr4id 2785 . 2 (𝑅 ∈ Ring → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
8 nfv 1915 . . 3 𝑠 𝑅 ∈ Ring
9 nfcv 2894 . . 3 𝑠ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
10 nfrab1 3415 . . 3 𝑠{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
11 notrab 4272 . . . . . . . . . 10 (𝑃 ∖ {𝑗𝑃𝑖𝑗}) = {𝑗𝑃 ∣ ¬ 𝑖𝑗}
1211eqeq2i 2744 . . . . . . . . 9 (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ 𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
13 ssrab2 4030 . . . . . . . . . . . 12 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
1413a1i 11 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃 → {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
15 elpwi 4557 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃𝑠𝑃)
16 ssdifsym 4224 . . . . . . . . . . 11 (({𝑗𝑃𝑖𝑗} ⊆ 𝑃𝑠𝑃) → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
1714, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
18 eqcom 2738 . . . . . . . . . 10 ({𝑗𝑃𝑖𝑗} = (𝑃𝑠) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗})
1917, 18bitrdi 287 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2012, 19bitr3id 285 . . . . . . . 8 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2120ad2antlr 727 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2221rexbidva 3154 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
23 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
244fvexi 6836 . . . . . . . 8 𝑃 ∈ V
2524rabex 5277 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ V
2623, 25elrnmpti 5902 . . . . . 6 ((𝑃𝑠) ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗})
2722, 26bitr4di 289 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) ∈ ran 𝑉))
2827pm5.32da 579 . . . 4 (𝑅 ∈ Ring → ((𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉)))
29 ssrab2 4030 . . . . . . . . . 10 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃
3024elpw2 5272 . . . . . . . . . 10 ({𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃)
3129, 30mpbir 231 . . . . . . . . 9 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
3231rgenw 3051 . . . . . . . 8 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
33 eqid 2731 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
3433rnmptss 7056 . . . . . . . 8 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃)
3532, 34ax-mp 5 . . . . . . 7 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃
3635sseli 3930 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) → 𝑠 ∈ 𝒫 𝑃)
3736pm4.71ri 560 . . . . 5 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})))
38 vex 3440 . . . . . . 7 𝑠 ∈ V
3933elrnmpt 5898 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4038, 39ax-mp 5 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
4140anbi2i 623 . . . . 5 ((𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4237, 41bitri 275 . . . 4 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
43 rabid 3416 . . . 4 (𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉))
4428, 42, 433bitr4g 314 . . 3 (𝑅 ∈ Ring → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ 𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
458, 9, 10, 44eqrd 3954 . 2 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
467, 45eqtrd 2766 1 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3899  wss 3902  𝒫 cpw 4550  cmpt 5172  ran crn 5617  cfv 6481  TopOpenctopn 17322  Ringcrg 20149  LIdealclidl 21141  PrmIdealcprmidl 33395  Speccrspec 33870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-tset 17177  df-ple 17178  df-rest 17323  df-topn 17324  df-prmidl 33396  df-idlsrg 33461  df-rspec 33871
This theorem is referenced by:  zartopn  33883
  Copyright terms: Public domain W3C validator