Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls Structured version   Visualization version   GIF version

Theorem zarcls 33905
Description: The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcls.1 𝑃 = (PrmIdeal‘𝑅)
zarcls.2 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
Assertion
Ref Expression
zarcls (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Distinct variable groups:   𝑃,𝑖,𝑗,𝑠   𝑅,𝑖,𝑗,𝑠   𝑉,𝑠
Allowed substitution hints:   𝑆(𝑖,𝑗,𝑠)   𝐽(𝑖,𝑗,𝑠)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls
StepHypRef Expression
1 zartop.2 . . 3 𝐽 = (TopOpen‘𝑆)
2 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
3 eqid 2735 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 zarcls.1 . . . 4 𝑃 = (PrmIdeal‘𝑅)
5 eqid 2735 . . . 4 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
62, 3, 4, 5rspectopn 33898 . . 3 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (TopOpen‘𝑆))
71, 6eqtr4id 2789 . 2 (𝑅 ∈ Ring → 𝐽 = ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
8 nfv 1914 . . 3 𝑠 𝑅 ∈ Ring
9 nfcv 2898 . . 3 𝑠ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
10 nfrab1 3436 . . 3 𝑠{𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}
11 notrab 4297 . . . . . . . . . 10 (𝑃 ∖ {𝑗𝑃𝑖𝑗}) = {𝑗𝑃 ∣ ¬ 𝑖𝑗}
1211eqeq2i 2748 . . . . . . . . 9 (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ 𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
13 ssrab2 4055 . . . . . . . . . . . 12 {𝑗𝑃𝑖𝑗} ⊆ 𝑃
1413a1i 11 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃 → {𝑗𝑃𝑖𝑗} ⊆ 𝑃)
15 elpwi 4582 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑃𝑠𝑃)
16 ssdifsym 4249 . . . . . . . . . . 11 (({𝑗𝑃𝑖𝑗} ⊆ 𝑃𝑠𝑃) → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
1714, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ {𝑗𝑃𝑖𝑗} = (𝑃𝑠)))
18 eqcom 2742 . . . . . . . . . 10 ({𝑗𝑃𝑖𝑗} = (𝑃𝑠) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗})
1917, 18bitrdi 287 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = (𝑃 ∖ {𝑗𝑃𝑖𝑗}) ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2012, 19bitr3id 285 . . . . . . . 8 (𝑠 ∈ 𝒫 𝑃 → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2120ad2antlr 727 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
2221rexbidva 3162 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗}))
23 zarcls.2 . . . . . . 7 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃𝑖𝑗})
244fvexi 6890 . . . . . . . 8 𝑃 ∈ V
2524rabex 5309 . . . . . . 7 {𝑗𝑃𝑖𝑗} ∈ V
2623, 25elrnmpti 5942 . . . . . 6 ((𝑃𝑠) ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)(𝑃𝑠) = {𝑗𝑃𝑖𝑗})
2722, 26bitr4di 289 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠 ∈ 𝒫 𝑃) → (∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗} ↔ (𝑃𝑠) ∈ ran 𝑉))
2827pm5.32da 579 . . . 4 (𝑅 ∈ Ring → ((𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉)))
29 ssrab2 4055 . . . . . . . . . 10 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃
3024elpw2 5304 . . . . . . . . . 10 ({𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 ↔ {𝑗𝑃 ∣ ¬ 𝑖𝑗} ⊆ 𝑃)
3129, 30mpbir 231 . . . . . . . . 9 {𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
3231rgenw 3055 . . . . . . . 8 𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃
33 eqid 2735 . . . . . . . . 9 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})
3433rnmptss 7113 . . . . . . . 8 (∀𝑖 ∈ (LIdeal‘𝑅){𝑗𝑃 ∣ ¬ 𝑖𝑗} ∈ 𝒫 𝑃 → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃)
3532, 34ax-mp 5 . . . . . . 7 ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ⊆ 𝒫 𝑃
3635sseli 3954 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) → 𝑠 ∈ 𝒫 𝑃)
3736pm4.71ri 560 . . . . 5 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})))
38 vex 3463 . . . . . . 7 𝑠 ∈ V
3933elrnmpt 5938 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4038, 39ax-mp 5 . . . . . 6 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗})
4140anbi2i 623 . . . . 5 ((𝑠 ∈ 𝒫 𝑃𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗})) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
4237, 41bitri 275 . . . 4 (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ (𝑠 ∈ 𝒫 𝑃 ∧ ∃𝑖 ∈ (LIdeal‘𝑅)𝑠 = {𝑗𝑃 ∣ ¬ 𝑖𝑗}))
43 rabid 3437 . . . 4 (𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉} ↔ (𝑠 ∈ 𝒫 𝑃 ∧ (𝑃𝑠) ∈ ran 𝑉))
4428, 42, 433bitr4g 314 . . 3 (𝑅 ∈ Ring → (𝑠 ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) ↔ 𝑠 ∈ {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉}))
458, 9, 10, 44eqrd 3978 . 2 (𝑅 ∈ Ring → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗𝑃 ∣ ¬ 𝑖𝑗}) = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
467, 45eqtrd 2770 1 (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃𝑠) ∈ ran 𝑉})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575  cmpt 5201  ran crn 5655  cfv 6531  TopOpenctopn 17435  Ringcrg 20193  LIdealclidl 21167  PrmIdealcprmidl 33450  Speccrspec 33893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-tset 17290  df-ple 17291  df-rest 17436  df-topn 17437  df-prmidl 33451  df-idlsrg 33516  df-rspec 33894
This theorem is referenced by:  zartopn  33906
  Copyright terms: Public domain W3C validator