MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss5 Structured version   Visualization version   GIF version

Theorem dfss5 4275
Description: Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.)
Assertion
Ref Expression
dfss5 (𝐴𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfss5
StepHypRef Expression
1 dfss3 3972 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
2 clel5 3665 . . 3 (𝑥𝐵 ↔ ∃𝑦𝐵 𝑥 = 𝑦)
32ralbii 3093 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 = 𝑦)
41, 3bitri 275 1 (𝐴𝐵 ↔ ∀𝑥𝐴𝑦𝐵 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wral 3061  wrex 3070  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-ss 3968
This theorem is referenced by:  usgrsscusgr  29478
  Copyright terms: Public domain W3C validator