![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss5 | Structured version Visualization version GIF version |
Description: Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
dfss5 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3971 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
2 | clel5 3656 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
3 | 2 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-v 3474 df-in 3956 df-ss 3966 |
This theorem is referenced by: usgrsscusgr 28982 |
Copyright terms: Public domain | W3C validator |