|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfss5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| dfss5 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss3 3972 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
| 2 | clel5 3665 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
| 3 | 2 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-ss 3968 | 
| This theorem is referenced by: usgrsscusgr 29478 | 
| Copyright terms: Public domain | W3C validator |