Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss5 | Structured version Visualization version GIF version |
Description: Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
Ref | Expression |
---|---|
dfss5 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3882 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
2 | clel5 3580 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
3 | 2 | ralbii 3097 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) |
4 | 1, 3 | bitri 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-in 3867 df-ss 3877 |
This theorem is referenced by: usgrsscusgr 27354 |
Copyright terms: Public domain | W3C validator |