| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifim | Structured version Visualization version GIF version | ||
| Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssdifim | ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss4 4249 | . . 3 ⊢ (𝐴 ⊆ 𝑉 ↔ (𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴) | |
| 2 | eqcom 2743 | . . 3 ⊢ ((𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
| 3 | 1, 2 | sylbb 219 | . 2 ⊢ (𝐴 ⊆ 𝑉 → 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
| 4 | difeq2 4100 | . . 3 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ 𝐵) = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
| 5 | 4 | eqcomd 2742 | . 2 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ (𝑉 ∖ 𝐴)) = (𝑉 ∖ 𝐵)) |
| 6 | 3, 5 | sylan9eq 2791 | 1 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∖ cdif 3928 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 |
| This theorem is referenced by: ssdifsym 4254 frgrwopregbsn 30303 |
| Copyright terms: Public domain | W3C validator |