MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifim Structured version   Visualization version   GIF version

Theorem ssdifim 4208
Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.)
Assertion
Ref Expression
ssdifim ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))

Proof of Theorem ssdifim
StepHypRef Expression
1 dfss4 4204 . . 3 (𝐴𝑉 ↔ (𝑉 ∖ (𝑉𝐴)) = 𝐴)
2 eqcom 2743 . . 3 ((𝑉 ∖ (𝑉𝐴)) = 𝐴𝐴 = (𝑉 ∖ (𝑉𝐴)))
31, 2sylbb 218 . 2 (𝐴𝑉𝐴 = (𝑉 ∖ (𝑉𝐴)))
4 difeq2 4062 . . 3 (𝐵 = (𝑉𝐴) → (𝑉𝐵) = (𝑉 ∖ (𝑉𝐴)))
54eqcomd 2742 . 2 (𝐵 = (𝑉𝐴) → (𝑉 ∖ (𝑉𝐴)) = (𝑉𝐵))
63, 5sylan9eq 2796 1 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  cdif 3894  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3900  df-in 3904  df-ss 3914
This theorem is referenced by:  ssdifsym  4209  frgrwopregbsn  28882
  Copyright terms: Public domain W3C validator