MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifim Structured version   Visualization version   GIF version

Theorem ssdifim 4253
Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.)
Assertion
Ref Expression
ssdifim ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))

Proof of Theorem ssdifim
StepHypRef Expression
1 dfss4 4249 . . 3 (𝐴𝑉 ↔ (𝑉 ∖ (𝑉𝐴)) = 𝐴)
2 eqcom 2743 . . 3 ((𝑉 ∖ (𝑉𝐴)) = 𝐴𝐴 = (𝑉 ∖ (𝑉𝐴)))
31, 2sylbb 219 . 2 (𝐴𝑉𝐴 = (𝑉 ∖ (𝑉𝐴)))
4 difeq2 4100 . . 3 (𝐵 = (𝑉𝐴) → (𝑉𝐵) = (𝑉 ∖ (𝑉𝐴)))
54eqcomd 2742 . 2 (𝐵 = (𝑉𝐴) → (𝑉 ∖ (𝑉𝐴)) = (𝑉𝐵))
63, 5sylan9eq 2791 1 ((𝐴𝑉𝐵 = (𝑉𝐴)) → 𝐴 = (𝑉𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cdif 3928  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948
This theorem is referenced by:  ssdifsym  4254  frgrwopregbsn  30303
  Copyright terms: Public domain W3C validator