![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifim | Structured version Visualization version GIF version |
Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
Ref | Expression |
---|---|
ssdifim | ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss4 4288 | . . 3 ⊢ (𝐴 ⊆ 𝑉 ↔ (𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴) | |
2 | eqcom 2747 | . . 3 ⊢ ((𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
3 | 1, 2 | sylbb 219 | . 2 ⊢ (𝐴 ⊆ 𝑉 → 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
4 | difeq2 4143 | . . 3 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ 𝐵) = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
5 | 4 | eqcomd 2746 | . 2 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ (𝑉 ∖ 𝐴)) = (𝑉 ∖ 𝐵)) |
6 | 3, 5 | sylan9eq 2800 | 1 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∖ cdif 3973 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 |
This theorem is referenced by: ssdifsym 4293 frgrwopregbsn 30349 |
Copyright terms: Public domain | W3C validator |