![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifim | Structured version Visualization version GIF version |
Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
Ref | Expression |
---|---|
ssdifim | ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss4 4258 | . . 3 ⊢ (𝐴 ⊆ 𝑉 ↔ (𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴) | |
2 | eqcom 2738 | . . 3 ⊢ ((𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
3 | 1, 2 | sylbb 218 | . 2 ⊢ (𝐴 ⊆ 𝑉 → 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
4 | difeq2 4116 | . . 3 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ 𝐵) = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
5 | 4 | eqcomd 2737 | . 2 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ (𝑉 ∖ 𝐴)) = (𝑉 ∖ 𝐵)) |
6 | 3, 5 | sylan9eq 2791 | 1 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∖ cdif 3945 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 |
This theorem is referenced by: ssdifsym 4263 frgrwopregbsn 29838 |
Copyright terms: Public domain | W3C validator |