Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinss2d Structured version   Visualization version   GIF version

Theorem ssinss2d 45097
Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
ssinss2d.1 (𝜑𝐵𝐶)
Assertion
Ref Expression
ssinss2d (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssinss2d
StepHypRef Expression
1 incom 4154 . 2 (𝐴𝐵) = (𝐵𝐴)
2 ssinss2d.1 . . 3 (𝜑𝐵𝐶)
32ssinss1d 4192 . 2 (𝜑 → (𝐵𝐴) ⊆ 𝐶)
41, 3eqsstrid 3968 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3896  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914
This theorem is referenced by:  caragenuncllem  46550
  Copyright terms: Public domain W3C validator