Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssinss2d | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ssinss2d.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssinss2d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4135 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | ssinss2d.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | 2 | ssinss1d 42596 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ⊆ 𝐶) |
4 | 1, 3 | eqsstrid 3969 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: caragenuncllem 44050 |
Copyright terms: Public domain | W3C validator |