Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0pwfi Structured version   Visualization version   GIF version

Theorem 0pwfi 45069
Description: The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0pwfi ∅ ∈ (𝒫 𝐴 ∩ Fin)

Proof of Theorem 0pwfi
StepHypRef Expression
1 0elpw 5355 . 2 ∅ ∈ 𝒫 𝐴
2 0fi 9083 . 2 ∅ ∈ Fin
31, 2elini 4198 1 ∅ ∈ (𝒫 𝐴 ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  cin 3949  c0 4332  𝒫 cpw 4599  Fincfn 8986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-ord 6386  df-on 6387  df-lim 6388  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-om 7889  df-en 8987  df-fin 8990
This theorem is referenced by:  pwfin0  45072
  Copyright terms: Public domain W3C validator